Instead of using the desktop <GL/gl.h>, we properly use the OpenGL ES 3.x
headers. Also, we now use GL_EXT_buffer_storage for MAP_PERSISTENT_BIT_EXT
and MAP_COHERENT_BIT_EXT as the core versions are only available in desktop
OpenGL 4.4. Similarly, we need GL_EXT_texture_format_BGRA8888 for GL_BGRA_EXT
as GL_BGRA is desktop-only.
The existing code would overwrite the texture's data even if the texture
is currently being used to render to screen. This changeset generates a
texture for each buffer preventing this invalid usage.
Instead of damaging the entire surface when rendering a cursor move,
we can use the EGL_KHR_swap_buffers_with_damage extension to only
damage the part of the window covered by the cursor. This should
reduce the cursor movement latency on Wayland.
We previously used strstr, which can be prone to false positives when
the name of one extension is a substring of another extension.
This commit creates the helper function util_hasGLExt, which asserts
that the substring found in extension list is bounded by either spaces
or the beginning/end of the string.
The $escape+S keybinding now cycles through the available scale algorithms.
This allows the user to switch between algorithms if the automatic detection
turns out to be problematic.
The algorithms are renumbered so that 0 can be LG_SCALE_AUTO.
Reusing cached EGLImages while the frame format has changed will result
in visual artifacts. We should instead destroy the EGLImages and let
them be recreated.
Instead of duplicating the #defines from the shader into the C code,
this commit adds a custom CMake rule that exports all the #defines
from a shader into a C header.
This commit fixes the issues with the meaning of useNearest being flipped
by removing the variable and use enumerations.
We define an enumeration EGL_DesktopScaleType to express the type of scaling
needed to be performed: no scaling, upscaling, or downscaling. This is
updated when either the frame size or the viewport size changes.
Previously, we only updated the useNearest when the frame size changes.
The desktop shader can now support an enumeration of scaling algorithms,
although only nearest and linear are currently implemented.
Like before, nearest is used when not scaling or upscaling, and linear is
used when downscaling.
This commit forces the DMA'd memory to be copied into the texture in
the EGL on_frame handler. This avoids tearing when the LG host inevitably
updates the underlying memory. We need an additional copy inside the GPU,
but this is cheap compared to copying from system memory.
We could have used logic to lock the memory buffer, but that would require
performing DMA on every frame, which wastes memory bandwidth. This
manifests as reduced frame rate when moving the mouse compared to the
non-DMA implementation.
We also keep multiple EGLImages, one for each DMA fd, to avoid issues
with the OpenGL driver.
Before, if you want to see the FPS, you need to close the client and
restart it with the -k switch to see the FPS. This is annoying.
This PR introduces a new keybind, ScrollLock+D, which, when pressed,
toggles the display of the FPS.
This is implemented for both EGL and OpenGL backends.
egl_help_set_text and egl_help_render were both accessing bmp->help from
different threads. This creates a race condition in which if the help text
is quickly toggled on and off, it stays on.
This has been fixed with an atomic exchange.
This should prevent the looking-glass-client window from having an alpha
channel. On Wayland, the alpha channel is used to compose the window onto
the desktop, so the wallpaper would bleed through unless set to complete
opaque.
We worked around this by using constant alpha for rendering, but it was
not sustainable. Instead, we should just ask for 24-bit context.
We ask for 32-bit colour buffer when creating the EGL context. On Wayland,
this sometimes give contexts with alpha channels, resulting in unwanted
transparency. So we clear the alpha channel in the desktop shader.
We also switch to using constant alpha for blending the splash, which
avoids more alpha issues.
This effectively reverts 4bceaf5.
Upstream ticket: https://gitlab.freedesktop.org/mesa/mesa/-/issues/4180
Commit 941c651 makes working around the hang in LG itself not as
annoying as before.
In the future, we can bypass this entire issue by implementing our own
swapchain and listening to frame callbacks ourselves.
Build failed with _FORTIFY_SOURCE enabled because the compiler couldn't
ensure the switch statements didn't hit the default arm and thus wouldn't
define the variables. Adding a statically failing assert makes sure that
all code paths either define the variables or fail early.
$ cd client
$ env CFLAGS='-O1 -D_FORTIFY_SOURCE=1' cmake -B build/
$ make -C build
[...]
client/renderers/EGL/egl.c: In function ‘egl_calc_mouse_size’:
client/renderers/EGL/egl.c:299:36: error: ‘h’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
299 | (this->mouseHeight * (1.0f / h)) * this->scaleY
| ~~~~~~^~~~
As the screen output rotation can be changed on the fly, if it has been
rotated to 90 or 270 the nearest flag will be incorrect, so we perform
this check here and override the provided value.
If the guest has it's output rotated (ie, landscape) we must rotate and
translate the pointer draw location, as well as all the translations of
cursor coordinate spaces based on the rotation, along with any local
rotations that may also be applied.
gcc -Wimplicit-fallthrough only detects comments if they are immediately
preceded before the next label. Braces stops it from recognizing the
fallthrough comment.
This makes it a compile-time error to call a function that semantically
takes no parameters with a nonzero number of arguments.
Previously, such code would still compile, but risk blowing up the stack
if a compiler chose to use something other than caller-cleanup calling
conventions.
This commit makes Looking Glass always use the OpenGL renderer when
running on Wayland. The EGL renderer is broken on Wayland and can't
reasonably be fixed until SDL is dropped entirely (as per
https://github.com/gnif/LookingGlass/issues/306).
Until that time, the OpenGL renderer provides a much better
Wayland-native experience.
eglSwapBuffers is allowed to block when called with a nonzero interval
parameter. On Wayland, Mesa will block until a frame callback arrives.
If an application is not visible, a compositor is free to not schedule
frame callbacks (in order to save CPU time rendering something that is
entirely invisible).
Currently, starting Looking Glass from a terminal, hiding it
entirely, and sending ^C will cause Looking Glass to hang joining the
render thread until the window is made visible again.
Calling eglDestroySurface is insufficient to unblock eglSwapBuffers, as
it attempts to grab the same underlying mutex.
Instead, this commit makes it so that we pass a 0 interval to
eglSwapBuffers when running on Wayland, such that we don't block waiting
for a frame callback. This is not entirely ideal as it *does* mean
Looking Glass submits buffers while hidden, but it seems better than
hanging on exit.
It also forces opengl:vsync and egl:vsync flags to off when running on
Wayland, as they are meaningless there.
Note: This only works with the KVMFR kernel module in a VM->VM
configuration. If this causes issues it can be disabled with the new
option `app:allowDMA`
The texture buffer may still be in use if we try to re-map it
immediately, instead only map when we need it mapped, and unmap
immediately after advancing the offset allowing the render thread to
continue while the unmap operation occurs
This is a major change to how the LG client performs it's updates. In
the past LG would operate a fixed FPS regardless of incoming update
speed and/or frequency. This change allows LG to dynamically increase
it's FPS in order to better sync with the guest as it's rate changes.
[Why]
Recent versions of Mesa may have trouble with surface creation, resulting in
errors like:
egl.c:428 | egl_render_startup | Failed to create EGL surface (eglError: 0x300b)
[How]
Replace eglGetDisplay() with eglGetPlatformDisplay(). Requires EGL 1.5, but should
be supported with any desktop driver released in the past few years.
This changes the method of the memory copy from the host application to
the guest. Instead of performing a full copy from the capture device
into shared memory, and then flagging the new frame, we instead set a
write pointer, flag the client that there is a new frame and then copy
in chunks of 1024 bytes until the entire frame is copied. The client
upon seeing the new frame flag begins to poll at high frequency the
write pointer and upon each update copies as much as it can into the
texture.
This should improve latency but also slightly increase CPU usage on the
client due to the high frequency polling.