Currently, we dispatch the events on the wayland display server ourselves.
This is fine when using the cairo backend of libdecor, as it does the same
thign we do, but other backends may require other things to be dispatched.
This commit lets libdecor dispatch events instead through libdecor_get_fd
and libdecor_dispatch, which should hopefully makes things less sketchy.
Our code to generate object files from shaders with the linker seems to
depend on GNU ld. More accurately, it works with lld, but we must specify
the correct object format via -m, which is very difficult to detect in a
satisfactory manner. Therefore we simply force use of GNU ld.
While the renderer can internally track this it would be better to
simply provide this information to the renderer directly so it can make
better decisions on how best to update the screen.
MinGW seems to decide at random whether it wants to use memcpy from
mscvrt.dll or ntdll.dll. Currently, on Debian buster, ntdll.dll is chosen,
while on sid, mscvrt.dll is chosen.
This commit declares a new .def file for ntdll containing only the
functions we want to link from ntdll.dll, and generates ntdll.a from it
with dlltool. This way, MinGW will never be tempted to link functions
like memcpy from ntdll.dll.
This function is sometimes flaky and may fail for no apparent reason,
see https://stackoverflow.com/q/3945003. This has also been experienced
during the development of #610.
This commit adds logging so we may see if it ever fails for no reason
and work out some way to fix it.
We were using an auto-reset event to signal the mousehook exit. This was
fine when there was only one thread, but with the addition of the update
thread, only one thread is signaled, causing the wait to last forever.
The fix is switching to a manual reset event and call ResetEvent after
the threads have exited.
The type of the QuadPart member of the LARGE_INTEGER union is actually
LONGLONG, so we should cast to LONGLONG instead of int.
This avoids truncation should (ms * 10000.0f) exceed 2^31-1.
If the guest is not sending frames at a constant rate, the minimum FPS
timeout may expire drawing an additional frame. This change calculates
the average ups frame time over the past 100ms and adds this to the
timeout value allowing this value to be dynamic.
The accumulated time is not the best way to do this as the timer
function callback may not be exactly every 1000ms, by using the
monotonic clock we will get more accurate results.
It used to be the case that when updating app.manifest, the resource file
it not automatically rebuilt. This made it a headache to update the manifest.
We set OBJECT_DEPENDS so that cmake knows to make the res file depend on
app.manifest and icon.ico.
This commit is based on PR #579 and should be rebased on it after it's merged.
GCC 11 will support x86_64 micro-architecture feature levels.
What we really want to support is nehalem or newer, which is x86-64-v2,
and specifying this instead of nehalem means that we are not tuning for
nehalem specifically.
This function is available since Windows Vista and can therefore be used
directly without going through GetProcAddress. Unfortunately, MinGW does
not have d3dkmthk.h, but we can declare the prototype ourselves and link
against gdi32.dll.
There is no need to LoadLibrary and GetProcAddress to get pointers to
NtDelayExecution or NtSetTimerResolution. These functions don't have
prototypes in any SDK header, but they are exported in ntdll.dll and
we can simply declare the prototype and link ntdll.
There is also no chance that the functions do not exist: I checked an
old install of Windows NT 4.0 and both of these functions exist.
Also used NtSetTimerResolution instead of ZeSetTimerResolution for
consistency (they are the same).
Also changed system timer resolution log message units to μs with
one decimal digit for readability. This is the actual amount of
precision available to us.
1. Use atomics and return exact cursor positions from egl_cursor_render
to avoid race conditions between cursor render and update.
2. Instead of messing with lastCursorValid in various overlays, simply use
the hasOverlay/hadOverlay logic for cursor damage. This simplifies the
logic greatly.
As a result, I believe all cursor-related artifacts are fixed.
Note to reviewer: as atomic_init and atomic_store are implemented as macros,
it is currently not possible to pass structs as compound literals due to the
comma being interpreted as an argument separator by the preprocessor.
According to MSDN documentation for CreateEnvironmentBlock, "[i]f the
environment block is passed to CreateProcessAsUser, you must also
specify the CREATE_UNICODE_ENVIRONMENT flag."
Also pass DETACHED_PROCESS because the host is a GUI application and
doesn't use the console.
Since with the service, we are already running as SYSTEM, we don't need
to use dupeSystemProcessToken to get the token for SYSTEM. This removes
the need for having SeDebugPrivilege, SeTcbPrivilege, and
SeAssignPrimaryTokenPrivilege, or otherwise doing sketchy things.
Furthermore, we now only open the token with the privileges we actually
need.
This allows the process to be terminated without resorting to
TerminateProcess. With some fixes, this allows the notification icon to be
removed when the service is restarted.
Furthermore, instead of sending WM_DESTROY to fool the window into believing
it's being destroyed, we actually call DestroyWindow now.
This commit creates a new utility library, eglutil.h, which contains code
to detect and use EGL_KHR_swap_buffers_with_damage or its EXT equivalent.
This logic used to be duplicated between the X11 and Wayland display servers,
which is not ideal.
Instead of using the desktop <GL/gl.h>, we properly use the OpenGL ES 3.x
headers. Also, we now use GL_EXT_buffer_storage for MAP_PERSISTENT_BIT_EXT
and MAP_COHERENT_BIT_EXT as the core versions are only available in desktop
OpenGL 4.4. Similarly, we need GL_EXT_texture_format_BGRA8888 for GL_BGRA_EXT
as GL_BGRA is desktop-only.
This allows us to set a callback to read a value out before it's about
to be overwritten which can be useful for things like calculating a
running average.