The renderer may take time to process the cursor update due to various
internal factors, as such it's best we copy the data and mark the
message as done ASAP. This prevents the host from filling up the queue
as easily when a high dpi mouse is in use.
People often miss the warnings about invalid arguments in their command
line, this last minute patch attempts to address this by making
warnings, errors, fixme's and fatal errors stand out if stdout is a TTY.
Conversion from the float values srcW/srcH to the int values for the client window dimensions would sometimes round down, causing the client to scale instead of matching the host's resolution.
A resolution switch could cause the renderer state to become invalid as
the texture format may change while it's being rendered. This fixes this
by adding a lock around the format change and render calls to the
renderer.
This fixes a regression caused by the move from SDL2 which handled this
itself. We should only minimize when focus is lost if the application
was in full screen mode.
util_guestCurToLocal may not be able to provide the local position if
we do not yet know where the guest cursor is, or the destination render
rect dimensions. Acting on this when this information is unknown causes
undefined behaivour.
Instead of damaging the entire surface when rendering a cursor move,
we can use the EGL_KHR_swap_buffers_with_damage extension to only
damage the part of the window covered by the cursor. This should
reduce the cursor movement latency on Wayland.
We previously used strstr, which can be prone to false positives when
the name of one extension is a substring of another extension.
This commit creates the helper function util_hasGLExt, which asserts
that the substring found in extension list is bounded by either spaces
or the beginning/end of the string.
Using util_cursorToInt messes with the error tracking for normal movements,
and is not necessary since we are computing an absolute position on the
client window.
Instead, we should pass doubles directly to display servers and let them
decide how to best handle them. For example, XIWarpPointer accepts doubles
directly.
Currently, (un)grabPointer is used both for tracking/confining the mouse
in normal mode, as well as entering/exiting capture mode. This makes it
impossible to use separate cursor logic for capture mode, which is needed
to deal with overlapping windows for the Wayland backend.
This commit creates separate (un)capturePointer for entering/exiting
capture mode. There should be no behaviour changes.
This adds a new method to the display server interface to allow the
application to notify the ds when there is a guest cursor position
update along with the translated local guest cursor position. This makes
it possible for the display server to keep the local cursor position in
sync with the guest cursor so that window leave events can be detected
when the cursor would move into an overlapping window.
Wayland currently just has a stub for this, and the X11 implementation
still needs some minor tweaking.
This option controls the time period (in ms) after which the help menu
appears when holding down the escape key. After this time period,
capture mode is no longer toggled.
This fixes#527.
When users press escapeKey for a long time, they probably want to
see the help text instead of actually toggling capture. Therefore,
if the key is held down for more than 500 ms, we assume the user
wants to look at the help text and do not toggle capture mode.
500 ms seems to be a decent compromise, allowing slow presses, but
is not enough time for the user to have looked at the help text.
During the refactor/rebase period with B3-next the conditional was
accidentally reversed. This would cause the cursor to be ungrabbed
simply when toggling capture mode instead of waiting for the cursor to
exit the window.
Mouse move deltas greater then 10 are rare, let alone the 20 this code
now uses. Any movements that exceed 20 pixels will disable the exit
detection code path preventing rapid movements in FPV games from causing
the cursor to exit the window if autoCapture is enabled.
As we now are using our own backends instead of SDL, there is no longer
any need to warp back to the center of the window when in autoCapture
mode. This breaks the SDL ds backend behaviour, however as SDL is
planned to be removed this is not an issue.
This is enabled on default. Specify wayland:warpSupport=no to disable it,
which may be useful on certain compositors that do not warp when the
pointer is confined.
This commit converts the output of ds->getProp(LG_DS_WARP_SUPPORT) to
an enum containing three items:
* LG_DS_WARP_NONE: warp is not supported at all
* LG_DS_WARP_SURFACE: warp is possible, but only inside the window
* LG_DS_WARP_SCREEN: warp is possible anywhere on the screen
LG_DS_WARP_NONE corresponds to the old false return value, and
LG_DS_WARP_SCREEN corresponds to the old true return value.
LG_DS_WARP_SURFACE is designed for Wayland, where warping is possible,
but only in our window. In this case, since we cannot warp outside
the window, we can warp the cursor to the edge when we attempt to exit.
If the cursor leaves, the normal leave routine gets called, and the
cursor disappears. If the cursor does not end up leaving, we grab it
again.
This makes dealing with window manager shortcuts that overlap with guest
keys more pleasant, while retaining the previous functionality for users
who prefer it.
For instance, previously, using Alt+Tab (or $mod as Alt in i3/sway
movement commands) would result in the guest retaining Alt as pressed.
When the guest regained focus, it would continue thinking Alt is
pressed, leading to accidentally triggering obscure shortcuts. One had
to remember to press Alt again to "unstick" things, which was
suboptimal.
This commit adds a new option, win:autoScreensaver, which when set to yes,
automatically disables the screensaver when requested by an application
running in the guest, and enables it when the application no longer wants
it disabled.
This is useful when doing media playback in the guest.
It appears that the keyboard should only be grabbed if the client is
focused and the cursor is in the view. However, the relevant logic was
missing from core_setCursorInView, and the keyboard was never actually
grabbed.
This commit adds the call to g_state.ds->grabKeyboard(), allowing grabbing
to work.
Before, if you want to see the FPS, you need to close the client and
restart it with the -k switch to see the FPS. This is annoying.
This PR introduces a new keybind, ScrollLock+D, which, when pressed,
toggles the display of the FPS.
This is implemented for both EGL and OpenGL backends.
One of the major issues with the old tracking code is a data race
between the cursor thread updating g_cursor.guest and the
app_handleMouseBasic function. Specifically, the latter may have
sent mouse input via spice that has not been processed by the guest
and updated g_cursor.guest, but the guest may overwrite g_cursor.guest
to a previous state before the input is processed. This causes some
movements to be doubled. Eventually, the cursor positions will
synchronize, but this nevertheless causes a lot of jitter.
In this commit, we introduce a new field g_cursor.projected, which
is unambiguously the position of the cursor after taking into account
all the input already sent via spice. This is synced up to the guest
cursor upon entering the window and when the host restarts. Afterwards,
all mouse movements will be based on this position. This eliminates
all cursor jitter as far as I could tell.
Also, the cursor is now synced to the host position when exiting
capture mode.
A downside of this commit is that if the 1:1 movement patch is not
correctly applied, the cursor position would be wildly off instead
of simply jittering, but that is an unsupported configuration and
should not matter.
Also unsupported is when an application in guest moves the cursor
programmatically and bypassing spice. When using those applications,
capture mode must be on. Before this commit, we try to move the guest
cursor back to where it should be, but it's inherently fragile and
may lead to scenarios such as wild movements in first-person shooters.
Using a macro ENABLE_OPENGL just like ENABLE_EGL to optionally remove
OpenGL implementation code. This is mostly because on Wayland it's just
a rehash of the EGL code (as EGL is the only way to create OpenGL
contexts on Wayland).
As the window manager may change our mode to full screen without our
request we must ask the ds backend for the current state when we want to
toggle the mode.
When input:grabKeyboardOnFocus=no, exiting capture mode should ungrab
the keyboard. Otherwise, focusing the window doesn't grab the keyboard,
but toggling capture mode would leave the keyboard stuck in a grabbed
state until defocused.
While a compositor will never send us 0-delta motion events, they can
still end up as 0-deltas post-projection, consuming QEMU buffer space
for no reason.
This should help with mouse skipping issues.
If the renderer fails to start it sets the run state to stopped, having
lgInit where it was causes this to be reset to running triggering
invalid usage of g_state.lgmp.
Under some circumstances, Looking Glass can hang when SIGINT'd, for
instance, if it's stuck waiting on spice I/O that won't complete because
the guest is misbehaving.
This commit provides an escape hatch for such cases, so one doesn't have
to reach for `kill -9 $(pidof looking-glass-client)`.