DarkflameServer/dGame/dComponents/MovementAIComponent.cpp
2023-07-09 20:38:47 -07:00

406 lines
9.8 KiB
C++

#include "MovementAIComponent.h"
#include <utility>
#include <cmath>
#include "ControllablePhysicsComponent.h"
#include "BaseCombatAIComponent.h"
#include "dpCommon.h"
#include "dpWorld.h"
#include "EntityManager.h"
#include "SimplePhysicsComponent.h"
#include "CDClientManager.h"
#include "Game.h"
#include "dLogger.h"
#include "SimplePhysicsComponent.h"
#include "ControllablePhysicsComponent.h"
#include "CDComponentsRegistryTable.h"
#include "CDPhysicsComponentTable.h"
#include "CDMovementAIComponentTable.h"
#include "Entity.h"
#include "BaseCombatAIComponent.h"
std::map<LOT, float> MovementAIComponent::m_PhysicsSpeedCache = {};
MovementAIComponent::MovementAIComponent(Entity* parent, int32_t componentId) : Component(parent) {
m_ComponentId = componentId;
m_Done = true;
m_BaseCombatAI = nullptr;
m_Acceleration = 0.4f;
m_Interrupted = false;
m_PullPoint = NiPoint3::ZERO;
m_HaltDistance = 0;
m_Timer = 0;
m_CurrentSpeed = 0;
m_Speed = 0;
m_TotalTime = 0;
m_LockRotation = false;
}
void MovementAIComponent::Startup() {
m_BaseCombatAI = m_ParentEntity->GetComponent<BaseCombatAIComponent>();
m_NextWaypoint = GetCurrentPosition();
}
void MovementAIComponent::LoadConfigData() {
bool useWanderDB = m_ParentEntity->GetVar<bool>(u"usewanderdb");
if (useWanderDB) return;
const auto wanderOverride = m_ParentEntity->GetVarAs<float>(u"wanderRadius");
if (wanderOverride != 0.0f) m_Info.wanderRadius = wanderOverride;
}
void MovementAIComponent::LoadTemplateData() {
m_BaseSpeed = GetBaseSpeed(m_ParentEntity->GetLOT());
if (m_ComponentId == -1) return;
auto* movementAiComponentTable = CDClientManager::Instance().GetTable<CDMovementAIComponentTable>();
auto movementEntries = movementAiComponentTable->Query([this](CDMovementAIComponent entry) {return (entry.id == this->m_ComponentId); });
if (movementEntries.empty()) return;
auto movementEntry = movementEntries.at(0);
MovementAIInfo moveInfo{};
moveInfo.movementType = movementEntry.MovementType;
moveInfo.wanderChance = movementEntry.WanderChance;
moveInfo.wanderRadius = movementEntry.WanderRadius;
moveInfo.wanderSpeed = movementEntry.WanderSpeed;
moveInfo.wanderDelayMax = movementEntry.WanderDelayMax;
moveInfo.wanderDelayMin = movementEntry.WanderDelayMin;
this->SetMoveInfo(moveInfo);
}
void MovementAIComponent::SetMoveInfo(const MovementAIInfo& info) {
m_Info = info;
//Try and fix the insane values:
if (m_Info.wanderRadius > 5.0f) m_Info.wanderRadius *= 0.5f;
if (m_Info.wanderRadius > 8.0f) m_Info.wanderRadius = 8.0f;
if (m_Info.wanderSpeed > 0.5f) m_Info.wanderSpeed *= 0.5f;
}
void MovementAIComponent::Update(const float deltaTime) {
if (m_Interrupted) {
const auto source = GetCurrentWaypoint();
const auto speed = deltaTime * 2.5f;
NiPoint3 velocity(
(m_PullPoint.x - source.x) * speed,
(m_PullPoint.y - source.y) * speed,
(m_PullPoint.z - source.z) * speed
);
SetPosition(source + velocity);
if (Vector3::DistanceSquared(GetCurrentPosition(), m_PullPoint) < 2 * 2) {
m_Interrupted = false;
}
return;
}
// Are we done?
if (AtFinalWaypoint()) return;
if (m_HaltDistance > 0) {
// Prevent us from hugging the target
if (Vector3::DistanceSquared(ApproximateLocation(), GetDestination()) < m_HaltDistance * m_HaltDistance) {
Stop();
return;
}
}
if (m_Timer > 0.0f) {
m_Timer -= deltaTime;
if (m_Timer > 0.0f) return;
m_Timer = 0.0f;
}
const auto source = GetCurrentWaypoint();
SetPosition(source);
NiPoint3 velocity = NiPoint3::ZERO;
if (m_Acceleration > 0 && m_BaseSpeed > 0 && AdvanceWaypointIndex()) // Do we have another waypoint to seek?
{
m_NextWaypoint = GetCurrentWaypoint();
if (m_NextWaypoint == source) {
m_Timer = 0;
goto nextAction;
}
if (m_CurrentSpeed < m_Speed) {
m_CurrentSpeed += m_Acceleration;
}
if (m_CurrentSpeed > m_Speed) {
m_CurrentSpeed = m_Speed;
}
const auto speed = m_CurrentSpeed * m_BaseSpeed;
const auto delta = m_NextWaypoint - source;
// Normalize the vector
const auto length = sqrtf(delta.x * delta.x + delta.y * delta.y + delta.z * delta.z);
if (length > 0) {
velocity.x = (delta.x / length) * speed;
velocity.y = (delta.y / length) * speed;
velocity.z = (delta.z / length) * speed;
}
// Calclute the time it will take to reach the next waypoint with the current speed
m_TotalTime = m_Timer = length / speed;
SetRotation(NiQuaternion::LookAt(source, m_NextWaypoint));
} else {
// Check if there are more waypoints in the queue, if so set our next destination to the next waypoint
if (!m_Queue.empty()) {
SetDestination(m_Queue.top());
m_Queue.pop();
} else {
// We have reached our final waypoint
Stop();
return;
}
}
nextAction:
SetVelocity(velocity);
EntityManager::Instance()->SerializeEntity(m_ParentEntity);
}
bool MovementAIComponent::AdvanceWaypointIndex() {
if (m_PathIndex >= m_CurrentPath.size()) {
return false;
}
m_PathIndex++;
return true;
}
NiPoint3 MovementAIComponent::GetCurrentWaypoint() const {
return m_PathIndex >= m_CurrentPath.size() ? GetCurrentPosition() : m_CurrentPath[m_PathIndex];
}
NiPoint3 MovementAIComponent::ApproximateLocation() const {
auto source = GetCurrentPosition();
if (m_Done) return source;
auto destination = m_NextWaypoint;
auto factor = m_TotalTime > 0.0f ? (m_TotalTime - m_Timer) / m_TotalTime : 0.0f;
NiPoint3 approximation = NiPoint3(
source.x + factor * (destination.x - source.x),
source.y + factor * (destination.y - source.y),
source.z + factor * (destination.z - source.z)
);
if (dpWorld::Instance().IsLoaded()) {
approximation.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(approximation);
}
return approximation;
}
bool MovementAIComponent::Warp(const NiPoint3& point) {
Stop();
NiPoint3 destination = point;
if (dpWorld::Instance().IsLoaded()) {
destination.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point);
if (std::abs(destination.y - point.y) > 3) {
return false;
}
}
SetPosition(destination);
EntityManager::Instance()->SerializeEntity(m_ParentEntity);
return true;
}
void MovementAIComponent::Stop() {
if (m_Done) return;
SetPosition(ApproximateLocation());
SetVelocity(NiPoint3::ZERO);
m_TotalTime = 0.0f;
m_Timer = 0.0f;
m_Done = true;
m_CurrentPath.clear();
m_PathIndex = 0;
m_CurrentSpeed = 0.0f;
EntityManager::Instance()->SerializeEntity(m_ParentEntity);
}
void MovementAIComponent::PullToPoint(const NiPoint3& point) {
Stop();
m_Interrupted = true;
m_PullPoint = point;
}
void MovementAIComponent::SetPath(const std::vector<NiPoint3>& path) {
for (auto itr = path.rbegin(); itr != path.rend(); ++itr) {
m_Queue.push(*itr);
}
SetDestination(m_Queue.top());
m_Queue.pop();
}
float MovementAIComponent::GetBaseSpeed(const LOT lot) {
// Check if the lot is in the cache
const auto& it = m_PhysicsSpeedCache.find(lot);
if (it != m_PhysicsSpeedCache.end()) {
return it->second;
}
auto* componentRegistryTable = CDClientManager::Instance().GetTable<CDComponentsRegistryTable>();
auto* physicsComponentTable = CDClientManager::Instance().GetTable<CDPhysicsComponentTable>();
int32_t componentID;
CDPhysicsComponent* physicsComponent = nullptr;
componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::CONTROLLABLE_PHYSICS, -1);
if (componentID == -1) {
componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::SIMPLE_PHYSICS, -1);
}
physicsComponent = physicsComponentTable->GetByID(componentID);
// Client defaults speed to 10 and if the speed is also null in the table, it defaults to 10.
float speed = 10.0f;
if (physicsComponent) speed = physicsComponent->speed;
float delta = fabs(speed) - 1.0f;
if (delta <= std::numeric_limits<float>::epsilon()) speed = 10.0f;
m_PhysicsSpeedCache[lot] = speed;
return speed;
}
void MovementAIComponent::SetPosition(const NiPoint3& value) const {
m_ParentEntity->SetPosition(value);
}
void MovementAIComponent::SetRotation(const NiQuaternion& value) const {
if (!m_LockRotation) m_ParentEntity->SetRotation(value);
}
void MovementAIComponent::SetVelocity(const NiPoint3& value) const {
auto* controllablePhysicsComponent = m_ParentEntity->GetComponent<ControllablePhysicsComponent>();
if (controllablePhysicsComponent) {
controllablePhysicsComponent->SetVelocity(value);
return;
}
auto* simplePhysicsComponent = m_ParentEntity->GetComponent<SimplePhysicsComponent>();
if (simplePhysicsComponent) {
simplePhysicsComponent->SetVelocity(value);
}
}
void MovementAIComponent::SetDestination(const NiPoint3& value) {
if (m_Interrupted) return;
const auto location = ApproximateLocation();
if (!AtFinalWaypoint()) SetPosition(location);
std::vector<NiPoint3> computedPath;
if (dpWorld::Instance().IsLoaded()) {
computedPath = dpWorld::Instance().GetNavMesh()->GetPath(GetCurrentPosition(), value, m_Info.wanderSpeed);
} else {
// Than take 10 points between the current position and the destination and make that the path
auto point = location;
auto delta = value - point;
auto step = delta / 10;
for (int i = 0; i < 10; i++) {
point = point + step;
computedPath.push_back(point);
}
}
// Somehow failed
if (computedPath.empty()) return;
m_CurrentPath.clear();
m_CurrentPath.push_back(location);
// Simply path
for (auto& point : computedPath) {
if (dpWorld::Instance().IsLoaded()) {
point.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point);
}
m_CurrentPath.push_back(point);
}
m_CurrentPath.push_back(computedPath.back());
m_PathIndex = 0;
m_TotalTime = 0.0f;
m_Timer = 0.0f;
m_Done = false;
}
NiPoint3 MovementAIComponent::GetDestination() const {
return m_CurrentPath.empty() ? GetCurrentPosition() : m_CurrentPath.back();
}
void MovementAIComponent::SetSpeed(const float value) {
m_Speed = value;
m_Acceleration = value / 5;
}
NiPoint3 MovementAIComponent::GetCurrentPosition() const {
return m_ParentEntity->GetPosition();
}