This implementation uses a line sweep algorithm to copy the precisely the
intersection of all accumulated damage rectangles, ensuring that every
pixel is copied exactly once, and no pixel is ever copied multiple times.
Furthermore, once a row has been swept, we update the framebuffer write
pointer immediately.
Before we try and perhaps fail to init DXGI, we should print out what
the device is so that when there is an error report we can immediately
see if the user has the QXL device attached still.
While it's correct for DXGI to use a asyncronous waitFrame model, other
capture interfaces such as NvFBC it is not correct. This change allows
the capture interface to specify which is more correct for it and moves
the waitFrame/post into the main thread if async is not desired.
Testing shows that `D3DKMTSetProcessSchedulingPriorityClass` has a
positive performance impact for NvFBC as well as DXGI, as such always
try to boost the priority for the windows host.
This change adds an average function to time how long it takes the GPU
to copy and map the texture, and then uses this average to sleep for 80%
of this average lowering CPU usage and potentially decreasing lock
contention.
This commit introduces a new option, app:capture, which can be set to
either DXGI or NvFBC to force the host application to use that backend.
This is very useful for testing DXGI on Quadro cards, which would default
to running with NvFBC.
This makes it a compile-time error to call a function that semantically
takes no parameters with a nonzero number of arguments.
Previously, such code would still compile, but risk blowing up the stack
if a compiler chose to use something other than caller-cleanup calling
conventions.
This commit bumps the KVMFR protocol version as it adds additional
hotspot x & y fields to the KVMFRCursor struct. This corrects the issue
of invalid alignment of the local mouse when the shape has an offset
such as the 'I' beam.