Files
DarkflameServer/dZoneManager/Raw.cpp
Aaron Kimbrell accdb4f9a1 Correct scene making, merged the old raw into the new.
added option to automatically write the raw obj file
Added scene colors to the obj
use proper scene colors from hf
2025-10-15 19:56:46 -05:00

404 lines
12 KiB
C++

#include "Raw.h"
#include "BinaryIO.h"
#include "Logger.h"
#include "SceneColor.h"
#include <fstream>
#include <algorithm>
namespace Raw {
/**
* @brief Read flair attributes from stream
*/
static bool ReadFlairAttributes(std::istream& stream, FlairAttributes& flair) {
try {
BinaryIO::BinaryRead(stream, flair.id);
BinaryIO::BinaryRead(stream, flair.scaleFactor);
BinaryIO::BinaryRead(stream, flair.position.x);
BinaryIO::BinaryRead(stream, flair.position.y);
BinaryIO::BinaryRead(stream, flair.position.z);
BinaryIO::BinaryRead(stream, flair.rotation.x);
BinaryIO::BinaryRead(stream, flair.rotation.y);
BinaryIO::BinaryRead(stream, flair.rotation.z);
BinaryIO::BinaryRead(stream, flair.colorR);
BinaryIO::BinaryRead(stream, flair.colorG);
BinaryIO::BinaryRead(stream, flair.colorB);
BinaryIO::BinaryRead(stream, flair.colorA);
return true;
} catch (const std::exception&) {
return false;
}
}
/**
* @brief Read mesh triangle data from stream
*/
static bool ReadMeshTri(std::istream& stream, MeshTri& meshTri) {
try {
BinaryIO::BinaryRead(stream, meshTri.meshTriListSize);
meshTri.meshTriList.resize(meshTri.meshTriListSize);
for (uint16_t i = 0; i < meshTri.meshTriListSize; ++i) {
BinaryIO::BinaryRead(stream, meshTri.meshTriList[i]);
}
return true;
} catch (const std::exception&) {
return false;
}
}
/**
* @brief Read a chunk from stream
*/
static bool ReadChunk(std::istream& stream, Chunk& chunk, uint16_t version) {
try {
// Read basic chunk info
BinaryIO::BinaryRead(stream, chunk.id);
if (stream.fail()) {
return false;
}
BinaryIO::BinaryRead(stream, chunk.width);
BinaryIO::BinaryRead(stream, chunk.height);
BinaryIO::BinaryRead(stream, chunk.offsetWorldX);
BinaryIO::BinaryRead(stream, chunk.offsetWorldZ);
if (stream.fail()) {
return false;
}
// For version < 32, shader ID comes before texture IDs
if (version < 32) {
BinaryIO::BinaryRead(stream, chunk.shaderId);
}
// Read texture IDs (4 textures)
chunk.textureIds.resize(4);
for (int i = 0; i < 4; ++i) {
BinaryIO::BinaryRead(stream, chunk.textureIds[i]);
}
if (stream.fail()) {
return false;
}
// Read scale factor
BinaryIO::BinaryRead(stream, chunk.scaleFactor);
if (stream.fail()) {
return false;
}
// Read heightmap
uint32_t heightMapSize = chunk.width * chunk.height;
chunk.heightMap.resize(heightMapSize);
for (uint32_t i = 0; i < heightMapSize; ++i) {
BinaryIO::BinaryRead(stream, chunk.heightMap[i]);
}
if (stream.fail()) {
return false;
}
// ColorMap (size varies by version)
if (version >= 32) {
BinaryIO::BinaryRead(stream, chunk.colorMapResolution);
} else {
chunk.colorMapResolution = chunk.width; // Default to chunk width for older versions
}
uint32_t colorMapPixelCount = chunk.colorMapResolution * chunk.colorMapResolution * 4; // RGBA
chunk.colorMap.resize(colorMapPixelCount);
stream.read(reinterpret_cast<char*>(chunk.colorMap.data()), colorMapPixelCount);
if (stream.fail()) {
return false;
}
// LightMap DDS
uint32_t lightMapSize;
BinaryIO::BinaryRead(stream, lightMapSize);
chunk.lightMap.resize(lightMapSize);
stream.read(reinterpret_cast<char*>(chunk.lightMap.data()), lightMapSize);
if (stream.fail()) {
return false;
}
// TextureMap (size varies by version)
if (version >= 32) {
BinaryIO::BinaryRead(stream, chunk.textureMapResolution);
} else {
chunk.textureMapResolution = chunk.width; // Default to chunk width for older versions
}
uint32_t textureMapPixelCount = chunk.textureMapResolution * chunk.textureMapResolution * 4;
chunk.textureMap.resize(textureMapPixelCount);
stream.read(reinterpret_cast<char*>(chunk.textureMap.data()), textureMapPixelCount);
if (stream.fail()) {
return false;
}
// Texture settings
BinaryIO::BinaryRead(stream, chunk.textureSettings);
// Blend map DDS
uint32_t blendMapDDSSize;
BinaryIO::BinaryRead(stream, blendMapDDSSize);
chunk.blendMap.resize(blendMapDDSSize);
stream.read(reinterpret_cast<char*>(chunk.blendMap.data()), blendMapDDSSize);
if (stream.fail()) {
return false;
}
// Read flairs
uint32_t numFlairs;
BinaryIO::BinaryRead(stream, numFlairs);
if (stream.fail()) {
return false;
}
chunk.flairs.resize(numFlairs);
for (uint32_t i = 0; i < numFlairs; ++i) {
if (!ReadFlairAttributes(stream, chunk.flairs[i])) {
return false;
}
}
// Scene map (version 32+ only)
if (version >= 32) {
uint32_t sceneMapSize = chunk.colorMapResolution * chunk.colorMapResolution;
chunk.sceneMap.resize(sceneMapSize);
stream.read(reinterpret_cast<char*>(chunk.sceneMap.data()), sceneMapSize);
if (stream.fail()) {
return false;
}
}
// Mesh vertex usage (read size first, then check if empty)
BinaryIO::BinaryRead(stream, chunk.vertSize);
if (stream.fail()) {
return false;
}
// Mesh vert usage
chunk.meshVertUsage.resize(chunk.vertSize);
for (uint32_t i = 0; i < chunk.vertSize; ++i) {
BinaryIO::BinaryRead(stream, chunk.meshVertUsage[i]);
}
if (stream.fail()) {
return false;
}
// Only continue with mesh data if we have vertex usage data
if (chunk.vertSize == 0) {
return true;
}
// Mesh vert size (16 elements)
chunk.meshVertSize.resize(16);
for (int i = 0; i < 16; ++i) {
BinaryIO::BinaryRead(stream, chunk.meshVertSize[i]);
}
if (stream.fail()) {
return false;
}
// Mesh triangles (16 elements)
chunk.meshTri.resize(16);
for (int i = 0; i < 16; ++i) {
if (!ReadMeshTri(stream, chunk.meshTri[i])) {
return false;
}
}
return true;
} catch (const std::exception&) {
return false;
}
}
bool ReadRaw(std::istream& stream, Raw& outRaw) {
// Get stream size
stream.seekg(0, std::ios::end);
auto streamSize = stream.tellg();
stream.seekg(0, std::ios::beg);
if (streamSize <= 0) {
return false;
}
try {
// Read header
BinaryIO::BinaryRead(stream, outRaw.version);
if (stream.fail()) {
return false;
}
BinaryIO::BinaryRead(stream, outRaw.dev);
if (stream.fail()) {
return false;
}
// Only read chunks if dev == 0
if (outRaw.dev == 0) {
BinaryIO::BinaryRead(stream, outRaw.numChunks);
BinaryIO::BinaryRead(stream, outRaw.numChunksWidth);
BinaryIO::BinaryRead(stream, outRaw.numChunksHeight);
// Read all chunks
outRaw.chunks.resize(outRaw.numChunks);
for (uint32_t i = 0; i < outRaw.numChunks; ++i) {
if (!ReadChunk(stream, outRaw.chunks[i], outRaw.version)) {
return false;
}
}
}
return true;
} catch (const std::exception&) {
return false;
}
}
void GenerateTerrainMesh(const Raw& raw, TerrainMesh& outMesh) {
outMesh.vertices.clear();
outMesh.triangles.clear();
if (raw.chunks.empty() || raw.version < 32) {
return; // No scene data available
}
LOG("GenerateTerrainMesh: Processing %u chunks", raw.chunks.size());
uint32_t vertexOffset = 0;
for (const auto& chunk : raw.chunks) {
// Skip chunks without scene maps
if (chunk.sceneMap.empty() || chunk.colorMapResolution == 0 || chunk.heightMap.empty()) {
LOG("Skipping chunk %u (sceneMap: %zu, colorMapRes: %u, heightMap: %zu)",
chunk.id, chunk.sceneMap.size(), chunk.colorMapResolution, chunk.heightMap.size());
continue;
}
LOG("Processing chunk %u: width=%u, height=%u, colorMapRes=%u, sceneMapSize=%zu",
chunk.id, chunk.width, chunk.height, chunk.colorMapResolution, chunk.sceneMap.size());
// Generate vertices for this chunk
for (uint32_t i = 0; i < chunk.width; ++i) {
for (uint32_t j = 0; j < chunk.height; ++j) {
// Get height at this position
const uint32_t heightIndex = chunk.width * i + j;
if (heightIndex >= chunk.heightMap.size()) continue;
const float y = chunk.heightMap[heightIndex];
// Calculate world position
// Based on RawFile::GenerateFinalMeshFromChunks in dTerrain:
// tempVert.SetX(tempVert.GetX() + (chunk->m_X / chunk->m_HeightMap->m_ScaleFactor));
// tempVert.SetY(tempVert.GetY() / chunk->m_HeightMap->m_ScaleFactor);
// tempVert.SetZ(tempVert.GetZ() + (chunk->m_Z / chunk->m_HeightMap->m_ScaleFactor));
// tempVert *= chunk->m_HeightMap->m_ScaleFactor;
float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
NiPoint3 worldPos(worldX, worldY, worldZ);
// Get scene ID at this position
// Map heightmap position to scene map position
// The scene map is colorMapResolution x colorMapResolution
// We need to map from heightmap coordinates (i, j) to scene map coordinates
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
// Scene map uses the same indexing pattern as heightmap: row * width + col
const uint32_t sceneIndex = sceneI * chunk.colorMapResolution + sceneJ;
uint8_t sceneID = 0;
if (sceneIndex < chunk.sceneMap.size()) {
sceneID = chunk.sceneMap[sceneIndex];
}
outMesh.vertices.emplace_back(worldPos, sceneID);
// Generate triangles (same pattern as dTerrain)
if (i > 0 && j > 0) {
const uint32_t currentVert = vertexOffset + chunk.width * i + j;
const uint32_t leftVert = currentVert - 1;
const uint32_t bottomLeftVert = vertexOffset + chunk.width * (i - 1) + j - 1;
const uint32_t bottomVert = vertexOffset + chunk.width * (i - 1) + j;
// First triangle
outMesh.triangles.push_back(currentVert);
outMesh.triangles.push_back(leftVert);
outMesh.triangles.push_back(bottomLeftVert);
// Second triangle
outMesh.triangles.push_back(bottomLeftVert);
outMesh.triangles.push_back(bottomVert);
outMesh.triangles.push_back(currentVert);
}
}
}
vertexOffset += chunk.width * chunk.height;
}
}
bool WriteTerrainMeshToOBJ(const TerrainMesh& mesh, const std::string& path) {
try {
std::ofstream file(path);
if (!file.is_open()) {
LOG("Failed to open OBJ file for writing: %s", path.c_str());
return false;
}
// Create instance of SceneColor for color lookup
SceneColor sceneColor;
// Write vertices with colors
// OBJ format supports vertex colors as: v x y z r g b
for (const auto& v : mesh.vertices) {
file << "v " << v.position.x << ' ' << v.position.y << ' ' << v.position.z;
uint8_t sceneID = v.sceneID;
const NiColor& color = sceneColor.Get(sceneID);
file << ' ' << color.m_Red << ' ' << color.m_Green << ' ' << color.m_Blue;
file << '\n';
}
// Write faces (triangles)
for (size_t i = 0; i < mesh.triangles.size(); i += 3) {
// OBJ indices are 1-based
file << "f " << (mesh.triangles[i] + 1) << ' '
<< (mesh.triangles[i + 1] + 1) << ' '
<< (mesh.triangles[i + 2] + 1) << '\n';
}
file.close();
LOG("Successfully wrote terrain mesh to OBJ: %s (%zu vertices, %zu triangles)",
path.c_str(), mesh.vertices.size(), mesh.triangles.size() / 3);
return true;
} catch (const std::exception& e) {
LOG("Exception while writing OBJ file: %s", e.what());
return false;
}
}
} // namespace Raw