mirror of
https://github.com/DarkflameUniverse/DarkflameServer.git
synced 2025-09-05 06:48:37 +00:00
test fix 2
This commit is contained in:
@@ -209,6 +209,10 @@ void Strip::ProcNormalAction(float deltaTime, ModelComponent& modelComponent) {
|
||||
m_IsRotating = true;
|
||||
m_InActionTranslation.y = isSpinNegative ? -number : number;
|
||||
m_PreviousFrameRotation = entity.GetRotation();
|
||||
// compute the absolute rotation target quaternion
|
||||
NiPoint3 deltaEuler = NiPoint3(0.0f, Math::DegToRad(m_InActionTranslation.y), 0.0f);
|
||||
m_RotationTarget = m_PreviousFrameRotation;
|
||||
m_RotationTarget *= NiQuaternion::FromEulerAngles(deltaEuler);
|
||||
// d/vi = t
|
||||
// radians/velocity = time
|
||||
// only care about the time, direction is irrelevant here
|
||||
@@ -223,6 +227,9 @@ void Strip::ProcNormalAction(float deltaTime, ModelComponent& modelComponent) {
|
||||
m_IsRotating = true;
|
||||
m_InActionTranslation.x = isRotateLeft ? -number : number;
|
||||
m_PreviousFrameRotation = entity.GetRotation();
|
||||
NiPoint3 deltaEuler = NiPoint3(Math::DegToRad(m_InActionTranslation.x), 0.0f, 0.0f);
|
||||
m_RotationTarget = m_PreviousFrameRotation;
|
||||
m_RotationTarget *= NiQuaternion::FromEulerAngles(deltaEuler);
|
||||
}
|
||||
} else if (nextActionType == "Roll" || nextActionType == "RollNegative") {
|
||||
const float radians = Math::DegToRad(number);
|
||||
@@ -234,6 +241,9 @@ void Strip::ProcNormalAction(float deltaTime, ModelComponent& modelComponent) {
|
||||
m_IsRotating = true;
|
||||
m_InActionTranslation.z = isRotateDown ? -number : number;
|
||||
m_PreviousFrameRotation = entity.GetRotation();
|
||||
NiPoint3 deltaEuler = NiPoint3(0.0f, 0.0f, Math::DegToRad(m_InActionTranslation.z));
|
||||
m_RotationTarget = m_PreviousFrameRotation;
|
||||
m_RotationTarget *= NiQuaternion::FromEulerAngles(deltaEuler);
|
||||
}
|
||||
}
|
||||
/* END Rotate */
|
||||
@@ -379,83 +389,37 @@ bool Strip::CheckRotation(float deltaTime, ModelComponent& modelComponent) {
|
||||
LOG("Velocity: x=%f, y=%f, z=%f", Math::RadToDeg(getAngVel.angVelocity.x) * deltaTime, Math::RadToDeg(getAngVel.angVelocity.y) * deltaTime, Math::RadToDeg(getAngVel.angVelocity.z) * deltaTime);
|
||||
m_PreviousFrameRotation = curRotation;
|
||||
|
||||
// Convert frame delta (radians) to absolute degrees moved this frame per axis.
|
||||
// Use the reported angular velocity (radians/sec) * deltaTime instead of extracting
|
||||
// Euler angles from the quaternion difference. Extracting Euler angles from a
|
||||
// combined-axis quaternion won't produce per-axis rotations when axes rotate
|
||||
// simultaneously, which caused late stopping. Using angular velocity is consistent
|
||||
// with how velocity is applied in SimplePhysicsComponent.
|
||||
NiPoint3 angMovedDegrees = NiPoint3(std::abs(Math::RadToDeg(getAngVel.angVelocity.x) * deltaTime),
|
||||
std::abs(Math::RadToDeg(getAngVel.angVelocity.y) * deltaTime),
|
||||
std::abs(Math::RadToDeg(getAngVel.angVelocity.z) * deltaTime));
|
||||
|
||||
const auto [rotateX, rotateY, rotateZ] = m_InActionTranslation;
|
||||
bool rotateFinished = true; // assume finished until an axis proves otherwise
|
||||
NiPoint3 finalRotationAdjustment = NiPoint3Constant::ZERO;
|
||||
|
||||
// Use a small epsilon to avoid missing the exact-zero case due to floating point
|
||||
constexpr float EPS_DEG = 1e-3f;
|
||||
|
||||
// Handle each axis independently so we can rotate on multiple axes at once.
|
||||
if (rotateX != 0.0f) {
|
||||
m_InActionTranslation.x -= angMovedDegrees.x;
|
||||
// Finished if we crossed zero or are within epsilon
|
||||
if (std::signbit(m_InActionTranslation.x) != std::signbit(rotateX) || std::abs(m_InActionTranslation.x) <= EPS_DEG) {
|
||||
finalRotationAdjustment.x = Math::DegToRad(m_InActionTranslation.x);
|
||||
m_InActionTranslation.x = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (rotateY != 0.0f) {
|
||||
m_InActionTranslation.y -= angMovedDegrees.y;
|
||||
if (std::signbit(m_InActionTranslation.y) != std::signbit(rotateY) || std::abs(m_InActionTranslation.y) <= EPS_DEG) {
|
||||
finalRotationAdjustment.y = Math::DegToRad(m_InActionTranslation.y);
|
||||
m_InActionTranslation.y = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (rotateZ != 0.0f) {
|
||||
m_InActionTranslation.z -= angMovedDegrees.z;
|
||||
if (std::signbit(m_InActionTranslation.z) != std::signbit(rotateZ) || std::abs(m_InActionTranslation.z) <= EPS_DEG) {
|
||||
finalRotationAdjustment.z = Math::DegToRad(m_InActionTranslation.z);
|
||||
m_InActionTranslation.z = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (rotateFinished && (finalRotationAdjustment != NiPoint3Constant::ZERO)) {
|
||||
LOG("Rotation finished, zeroing angVel for finished axes");
|
||||
|
||||
// Zero only the angular velocity channels that have just finished.
|
||||
if (rotateX != 0.0f) getAngVel.angVelocity.x = 0.0f;
|
||||
if (rotateY != 0.0f) getAngVel.angVelocity.y = 0.0f;
|
||||
if (rotateZ != 0.0f) getAngVel.angVelocity.z = 0.0f;
|
||||
// Use quaternion remaining angle to decide completion. Compute the quaternion
|
||||
// that rotates from the current rotation to the target rotation. If the
|
||||
// rotation angle of that quaternion is below an epsilon, we're finished.
|
||||
NiQuaternion remaining = modelComponent.GetParent()->GetRotation().Diff(m_RotationTarget);
|
||||
float w = remaining.w;
|
||||
if (w > 1.0f) w = 1.0f; // clamp
|
||||
if (w < -1.0f) w = -1.0f;
|
||||
// angle (radians) = 2 * acos(w)
|
||||
float angleRemainingRad = 2.0f * acos(w);
|
||||
float angleRemainingDeg = Math::RadToDeg(angleRemainingRad);
|
||||
constexpr float EPS_DEG = 0.1f; // finish when less than 0.1 degree remains
|
||||
|
||||
if (angleRemainingDeg <= EPS_DEG) {
|
||||
LOG("Rotation finished by quaternion remaining angle (%f deg)", angleRemainingDeg);
|
||||
// Zero angular velocity on axes that were part of this action (safe to zero all)
|
||||
getAngVel.angVelocity = NiPoint3Constant::ZERO;
|
||||
GameMessages::SetAngularVelocity setAngVel{};
|
||||
setAngVel.target = modelComponent.GetParent()->GetObjectID();
|
||||
setAngVel.angVelocity = getAngVel.angVelocity;
|
||||
setAngVel.Send();
|
||||
|
||||
// Do the final adjustment so we will have rotated exactly the requested units
|
||||
auto currentRot = modelComponent.GetParent()->GetRotation();
|
||||
NiQuaternion finalAdjustment = NiQuaternion::FromEulerAngles(finalRotationAdjustment);
|
||||
currentRot *= finalAdjustment;
|
||||
currentRot.Normalize();
|
||||
modelComponent.GetParent()->SetRotation(currentRot);
|
||||
|
||||
// If all axes are zeroed out then stop rotating
|
||||
if (m_InActionTranslation == NiPoint3Constant::ZERO) {
|
||||
m_IsRotating = false;
|
||||
}
|
||||
// Snap to exact target to avoid tiny residual error
|
||||
modelComponent.GetParent()->SetRotation(m_RotationTarget);
|
||||
m_InActionTranslation = NiPoint3Constant::ZERO;
|
||||
m_IsRotating = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
LOG("angVel: x=%f, y=%f, z=%f", m_InActionTranslation.x, m_InActionTranslation.y, m_InActionTranslation.z);
|
||||
return rotateFinished;
|
||||
// Not finished yet
|
||||
return false;
|
||||
}
|
||||
|
||||
void Strip::Update(float deltaTime, ModelComponent& modelComponent) {
|
||||
|
@@ -78,6 +78,9 @@ private:
|
||||
|
||||
NiQuaternion m_PreviousFrameRotation{};
|
||||
|
||||
// The absolute target rotation for the current rotation action
|
||||
NiQuaternion m_RotationTarget{};
|
||||
|
||||
NiPoint3 m_SavedVelocity{};
|
||||
};
|
||||
|
||||
|
@@ -7,47 +7,24 @@
|
||||
// Test that rotating a quaternion by 90 degrees on each axis in one frame
|
||||
// yields approximately 90 degrees when converted back to Euler angles.
|
||||
TEST(StripRotationTest, Simultaneous90DegreesXYZ) {
|
||||
// Simulate the per-axis logic used in Strip::CheckRotation.
|
||||
// Assume a single-frame rotation where angular velocity is 90 degrees/sec
|
||||
// on each axis and deltaTime is 1.0 seconds. The remaining rotation
|
||||
// prior to the frame is 90 degrees on each axis.
|
||||
NiPoint3 remainingRotationDeg(90.0f, 90.0f, 90.0f);
|
||||
NiPoint3 angularVelocityDegPerSec(90.0f, 90.0f, 90.0f);
|
||||
const float deltaTime = 1.0f;
|
||||
// Use quaternion math to verify a single-frame rotation of 90deg on each axis
|
||||
// reaches the composed target. Start rotation is identity.
|
||||
NiQuaternion start = NiQuaternionConstant::IDENTITY;
|
||||
NiPoint3 targetEulerRad(Math::DegToRad(90.0f), Math::DegToRad(90.0f), Math::DegToRad(90.0f));
|
||||
NiQuaternion target = NiQuaternion::FromEulerAngles(targetEulerRad);
|
||||
|
||||
// Compute degrees moved this frame per axis
|
||||
NiPoint3 angMovedDegrees(std::abs(angularVelocityDegPerSec.x) * deltaTime,
|
||||
std::abs(angularVelocityDegPerSec.y) * deltaTime,
|
||||
std::abs(angularVelocityDegPerSec.z) * deltaTime);
|
||||
// Simulate applying angular velocity of 90deg/sec on each axis for 1 second
|
||||
NiPoint3 appliedEulerRad = targetEulerRad; // angularVel * deltaTime
|
||||
NiQuaternion afterFrame = start;
|
||||
afterFrame *= NiQuaternion::FromEulerAngles(appliedEulerRad);
|
||||
|
||||
// Subtract movement from remaining rotation per axis (mirrors Strip logic)
|
||||
bool rotateFinished = true;
|
||||
constexpr float EPS_DEG = 1e-3f;
|
||||
// Remaining quaternion from current to target should be identity (or near it)
|
||||
NiQuaternion remaining = afterFrame.Diff(target);
|
||||
float w = remaining.w;
|
||||
if (w > 1.0f) w = 1.0f;
|
||||
if (w < -1.0f) w = -1.0f;
|
||||
float angleRemainingDeg = Math::RadToDeg(2.0f * acos(w));
|
||||
|
||||
// X
|
||||
remainingRotationDeg.x -= angMovedDegrees.x;
|
||||
if (std::signbit(remainingRotationDeg.x) != std::signbit(90.0f) || std::abs(remainingRotationDeg.x) <= EPS_DEG) {
|
||||
remainingRotationDeg.x = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
|
||||
// Y
|
||||
remainingRotationDeg.y -= angMovedDegrees.y;
|
||||
if (std::signbit(remainingRotationDeg.y) != std::signbit(90.0f) || std::abs(remainingRotationDeg.y) <= EPS_DEG) {
|
||||
remainingRotationDeg.y = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
|
||||
// Z
|
||||
remainingRotationDeg.z -= angMovedDegrees.z;
|
||||
if (std::signbit(remainingRotationDeg.z) != std::signbit(90.0f) || std::abs(remainingRotationDeg.z) <= EPS_DEG) {
|
||||
remainingRotationDeg.z = 0.0f;
|
||||
} else {
|
||||
rotateFinished = false;
|
||||
}
|
||||
|
||||
ASSERT_TRUE(rotateFinished);
|
||||
ASSERT_EQ(remainingRotationDeg, NiPoint3(0.0f, 0.0f, 0.0f));
|
||||
// Allow a small residual due to floating point and composition order
|
||||
ASSERT_LE(angleRemainingDeg, 0.2f);
|
||||
}
|
||||
|
Reference in New Issue
Block a user