mirror of
https://github.com/DarkflameUniverse/DarkflameServer.git
synced 2025-12-11 18:48:26 +00:00
clamp search to bounds
This commit is contained in:
@@ -1974,8 +1974,8 @@ namespace DEVGMCommands {
|
||||
const float y = chunk.heightMap[heightIndex];
|
||||
|
||||
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
|
||||
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
|
||||
|
||||
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
|
||||
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
|
||||
@@ -1987,15 +1987,13 @@ namespace DEVGMCommands {
|
||||
}
|
||||
|
||||
// Check if this point belongs to the current scene
|
||||
if (sceneID == currentSceneID.GetSceneID()) {
|
||||
// Calculate world position (same as GenerateTerrainMesh)
|
||||
const float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
const float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
|
||||
NiPoint3 spawnPos(worldX, worldY, worldZ);
|
||||
|
||||
EntityInfo info;
|
||||
if (sceneID == currentSceneID.GetSceneID()) {
|
||||
// Calculate world position (same as GenerateTerrainMesh)
|
||||
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
|
||||
NiPoint3 spawnPos(worldX, worldY, worldZ); EntityInfo info;
|
||||
info.lot = lot + currentSceneID.GetSceneID(); // to differentiate scenes
|
||||
info.pos = spawnPos;
|
||||
info.rot = QuatUtils::IDENTITY;
|
||||
@@ -2065,8 +2063,8 @@ namespace DEVGMCommands {
|
||||
const float y = chunk.heightMap[heightIndex];
|
||||
|
||||
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
|
||||
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
|
||||
|
||||
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
|
||||
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
|
||||
@@ -2080,14 +2078,12 @@ namespace DEVGMCommands {
|
||||
// Skip invalid scenes (scene ID 0 typically means no scene)
|
||||
if (sceneID == 0) continue;
|
||||
|
||||
// Calculate world position (same as GenerateTerrainMesh)
|
||||
const float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
const float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
|
||||
NiPoint3 spawnPos(worldX, worldY, worldZ);
|
||||
|
||||
EntityInfo info;
|
||||
// Calculate world position (same as GenerateTerrainMesh)
|
||||
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
|
||||
NiPoint3 spawnPos(worldX, worldY, worldZ); EntityInfo info;
|
||||
info.lot = lot + sceneID; // to show different scenes
|
||||
info.pos = spawnPos;
|
||||
info.rot = QuatUtils::IDENTITY;
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include "SceneColor.h"
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
|
||||
namespace Raw {
|
||||
|
||||
@@ -51,22 +52,20 @@ namespace Raw {
|
||||
*/
|
||||
static bool ReadChunk(std::istream& stream, Chunk& chunk, uint16_t version) {
|
||||
try {
|
||||
// Read basic chunk info
|
||||
BinaryIO::BinaryRead(stream, chunk.id);
|
||||
if (stream.fail()) {
|
||||
return false;
|
||||
}
|
||||
// Read basic chunk info
|
||||
BinaryIO::BinaryRead(stream, chunk.id);
|
||||
if (stream.fail()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
BinaryIO::BinaryRead(stream, chunk.width);
|
||||
BinaryIO::BinaryRead(stream, chunk.height);
|
||||
BinaryIO::BinaryRead(stream, chunk.offsetWorldX);
|
||||
BinaryIO::BinaryRead(stream, chunk.offsetWorldZ);
|
||||
BinaryIO::BinaryRead(stream, chunk.width);
|
||||
BinaryIO::BinaryRead(stream, chunk.height);
|
||||
BinaryIO::BinaryRead(stream, chunk.offsetX);
|
||||
BinaryIO::BinaryRead(stream, chunk.offsetZ);
|
||||
|
||||
if (stream.fail()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// For version < 32, shader ID comes before texture IDs
|
||||
if (stream.fail()) {
|
||||
return false;
|
||||
} // For version < 32, shader ID comes before texture IDs
|
||||
if (version < 32) {
|
||||
BinaryIO::BinaryRead(stream, chunk.shaderId);
|
||||
}
|
||||
@@ -264,9 +263,30 @@ namespace Raw {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate terrain bounds from all chunks
|
||||
if (!outRaw.chunks.empty()) {
|
||||
outRaw.minBoundsX = std::numeric_limits<float>::max();
|
||||
outRaw.minBoundsZ = std::numeric_limits<float>::max();
|
||||
outRaw.maxBoundsX = std::numeric_limits<float>::lowest();
|
||||
outRaw.maxBoundsZ = std::numeric_limits<float>::lowest();
|
||||
|
||||
for (const auto& chunk : outRaw.chunks) {
|
||||
// Calculate chunk bounds
|
||||
const float chunkMinX = chunk.offsetX;
|
||||
const float chunkMinZ = chunk.offsetZ;
|
||||
const float chunkMaxX = chunkMinX + (chunk.width * chunk.scaleFactor);
|
||||
const float chunkMaxZ = chunkMinZ + (chunk.height * chunk.scaleFactor);
|
||||
|
||||
// Update overall bounds
|
||||
outRaw.minBoundsX = std::min(outRaw.minBoundsX, chunkMinX);
|
||||
outRaw.minBoundsZ = std::min(outRaw.minBoundsZ, chunkMinZ);
|
||||
outRaw.maxBoundsX = std::max(outRaw.maxBoundsX, chunkMaxX);
|
||||
outRaw.maxBoundsZ = std::max(outRaw.maxBoundsZ, chunkMaxZ);
|
||||
} LOG("Raw terrain bounds: X[%.2f, %.2f], Z[%.2f, %.2f]",
|
||||
outRaw.minBoundsX, outRaw.maxBoundsX, outRaw.minBoundsZ, outRaw.maxBoundsZ);
|
||||
}
|
||||
|
||||
return true;
|
||||
} return true;
|
||||
} catch (const std::exception&) {
|
||||
return false;
|
||||
}
|
||||
@@ -302,40 +322,32 @@ namespace Raw {
|
||||
const uint32_t heightIndex = chunk.width * i + j;
|
||||
if (heightIndex >= chunk.heightMap.size()) continue;
|
||||
|
||||
const float y = chunk.heightMap[heightIndex];
|
||||
const float y = chunk.heightMap[heightIndex];
|
||||
|
||||
// Calculate world position
|
||||
// Based on RawFile::GenerateFinalMeshFromChunks in dTerrain:
|
||||
// tempVert.SetX(tempVert.GetX() + (chunk->m_X / chunk->m_HeightMap->m_ScaleFactor));
|
||||
// tempVert.SetY(tempVert.GetY() / chunk->m_HeightMap->m_ScaleFactor);
|
||||
// tempVert.SetZ(tempVert.GetZ() + (chunk->m_Z / chunk->m_HeightMap->m_ScaleFactor));
|
||||
// tempVert *= chunk->m_HeightMap->m_ScaleFactor;
|
||||
|
||||
float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
// Calculate world position
|
||||
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
|
||||
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
|
||||
|
||||
NiPoint3 worldPos(worldX, worldY, worldZ);
|
||||
const NiPoint3 worldPos(worldX, worldY, worldZ);
|
||||
|
||||
// Get scene ID at this position
|
||||
// Map heightmap position to scene map position
|
||||
// The scene map is colorMapResolution x colorMapResolution
|
||||
// We need to map from heightmap coordinates (i, j) to scene map coordinates
|
||||
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
|
||||
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
|
||||
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
|
||||
// Scene map uses the same indexing pattern as heightmap: row * width + col
|
||||
const uint32_t sceneIndex = sceneI * chunk.colorMapResolution + sceneJ;
|
||||
// Get scene ID at this position
|
||||
// Map heightmap position to scene map position
|
||||
// The scene map is colorMapResolution x colorMapResolution
|
||||
// We need to map from heightmap coordinates (i, j) to scene map coordinates
|
||||
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
|
||||
|
||||
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
|
||||
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
|
||||
// Scene map uses the same indexing pattern as heightmap: row * width + col
|
||||
const uint32_t sceneIndex = sceneI * chunk.colorMapResolution + sceneJ;
|
||||
|
||||
uint8_t sceneID = 0;
|
||||
if (sceneIndex < chunk.sceneMap.size()) {
|
||||
sceneID = chunk.sceneMap[sceneIndex];
|
||||
}
|
||||
outMesh.vertices.emplace_back(worldPos, sceneID);
|
||||
|
||||
// Generate triangles (same pattern as dTerrain)
|
||||
uint8_t sceneID = 0;
|
||||
if (sceneIndex < chunk.sceneMap.size()) {
|
||||
sceneID = chunk.sceneMap[sceneIndex];
|
||||
}
|
||||
outMesh.vertices.emplace_back(worldPos, sceneID);
|
||||
if (i > 0 && j > 0) {
|
||||
const uint32_t currentVert = vertexOffset + chunk.width * i + j;
|
||||
const uint32_t leftVert = currentVert - 1;
|
||||
|
||||
@@ -68,8 +68,8 @@ struct Chunk {
|
||||
uint32_t id;
|
||||
uint32_t width;
|
||||
uint32_t height;
|
||||
float offsetWorldX;
|
||||
float offsetWorldZ;
|
||||
float offsetX;
|
||||
float offsetZ;
|
||||
uint32_t shaderId;
|
||||
|
||||
// Texture IDs (4 textures per chunk)
|
||||
@@ -119,6 +119,12 @@ struct Raw {
|
||||
uint32_t numChunksWidth = 0;
|
||||
uint32_t numChunksHeight = 0;
|
||||
std::vector<Chunk> chunks;
|
||||
|
||||
// Calculated bounds of the entire terrain
|
||||
float minBoundsX = 0.0f;
|
||||
float minBoundsZ = 0.0f;
|
||||
float maxBoundsX = 0.0f;
|
||||
float maxBoundsZ = 0.0f;
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -313,23 +313,27 @@ LWOSCENEID dZoneManager::GetSceneIDFromPosition(const NiPoint3& position) const
|
||||
return LWOSCENEID_INVALID;
|
||||
}
|
||||
|
||||
// Convert 3D position to 2D (XZ plane) and clamp to terrain bounds
|
||||
float posX = std::clamp(position.x, raw.minBoundsX, raw.maxBoundsX);
|
||||
float posZ = std::clamp(position.z, raw.minBoundsZ, raw.maxBoundsZ);
|
||||
|
||||
// Find the chunk containing this position
|
||||
// Reverse the world position calculation from GenerateTerrainMesh
|
||||
for (const auto& chunk : raw.chunks) {
|
||||
if (chunk.sceneMap.empty()) continue;
|
||||
|
||||
// Reverse: worldX = (i + offsetWorldX/scaleFactor) * scaleFactor
|
||||
// Therefore: i = worldX/scaleFactor - offsetWorldX/scaleFactor
|
||||
const float heightI = position.x / chunk.scaleFactor - (chunk.offsetWorldX / chunk.scaleFactor);
|
||||
const float heightJ = position.z / chunk.scaleFactor - (chunk.offsetWorldZ / chunk.scaleFactor);
|
||||
// Reverse: worldX = (i + offsetX/scaleFactor) * scaleFactor
|
||||
// Therefore: i = worldX/scaleFactor - offsetX/scaleFactor
|
||||
const float heightI = posX / chunk.scaleFactor - (chunk.offsetX / chunk.scaleFactor);
|
||||
const float heightJ = posZ / chunk.scaleFactor - (chunk.offsetZ / chunk.scaleFactor);
|
||||
|
||||
// Check if position is within this chunk's heightmap bounds
|
||||
if (heightI >= 0.0f && heightI < chunk.width &&
|
||||
heightJ >= 0.0f && heightJ < chunk.height) {
|
||||
if (heightI >= 0.0f && heightI < static_cast<float>(chunk.width) &&
|
||||
heightJ >= 0.0f && heightJ < static_cast<float>(chunk.height)) {
|
||||
|
||||
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
|
||||
const float sceneMapI = (heightI / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = (heightJ / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
|
||||
const float sceneMapI = (heightI / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
const float sceneMapJ = (heightJ / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
|
||||
|
||||
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
|
||||
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
|
||||
|
||||
Reference in New Issue
Block a user