clamp search to bounds

This commit is contained in:
Aaron Kimbrell
2025-10-17 09:17:10 -05:00
parent c87c9c20be
commit 20c05cb2f2
4 changed files with 95 additions and 77 deletions

View File

@@ -1974,8 +1974,8 @@ namespace DEVGMCommands {
const float y = chunk.heightMap[heightIndex];
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
@@ -1987,15 +1987,13 @@ namespace DEVGMCommands {
}
// Check if this point belongs to the current scene
if (sceneID == currentSceneID.GetSceneID()) {
// Calculate world position (same as GenerateTerrainMesh)
const float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
const float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
if (sceneID == currentSceneID.GetSceneID()) {
// Calculate world position (same as GenerateTerrainMesh)
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
NiPoint3 spawnPos(worldX, worldY, worldZ);
EntityInfo info;
NiPoint3 spawnPos(worldX, worldY, worldZ); EntityInfo info;
info.lot = lot + currentSceneID.GetSceneID(); // to differentiate scenes
info.pos = spawnPos;
info.rot = QuatUtils::IDENTITY;
@@ -2065,8 +2063,8 @@ namespace DEVGMCommands {
const float y = chunk.heightMap[heightIndex];
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
@@ -2080,14 +2078,12 @@ namespace DEVGMCommands {
// Skip invalid scenes (scene ID 0 typically means no scene)
if (sceneID == 0) continue;
// Calculate world position (same as GenerateTerrainMesh)
const float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
const float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
// Calculate world position (same as GenerateTerrainMesh)
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
NiPoint3 spawnPos(worldX, worldY, worldZ);
EntityInfo info;
NiPoint3 spawnPos(worldX, worldY, worldZ); EntityInfo info;
info.lot = lot + sceneID; // to show different scenes
info.pos = spawnPos;
info.rot = QuatUtils::IDENTITY;

View File

@@ -4,6 +4,7 @@
#include "SceneColor.h"
#include <fstream>
#include <algorithm>
#include <limits>
namespace Raw {
@@ -51,22 +52,20 @@ namespace Raw {
*/
static bool ReadChunk(std::istream& stream, Chunk& chunk, uint16_t version) {
try {
// Read basic chunk info
BinaryIO::BinaryRead(stream, chunk.id);
if (stream.fail()) {
return false;
}
// Read basic chunk info
BinaryIO::BinaryRead(stream, chunk.id);
if (stream.fail()) {
return false;
}
BinaryIO::BinaryRead(stream, chunk.width);
BinaryIO::BinaryRead(stream, chunk.height);
BinaryIO::BinaryRead(stream, chunk.offsetWorldX);
BinaryIO::BinaryRead(stream, chunk.offsetWorldZ);
BinaryIO::BinaryRead(stream, chunk.width);
BinaryIO::BinaryRead(stream, chunk.height);
BinaryIO::BinaryRead(stream, chunk.offsetX);
BinaryIO::BinaryRead(stream, chunk.offsetZ);
if (stream.fail()) {
return false;
}
// For version < 32, shader ID comes before texture IDs
if (stream.fail()) {
return false;
} // For version < 32, shader ID comes before texture IDs
if (version < 32) {
BinaryIO::BinaryRead(stream, chunk.shaderId);
}
@@ -264,9 +263,30 @@ namespace Raw {
return false;
}
}
}
return true;
// Calculate terrain bounds from all chunks
if (!outRaw.chunks.empty()) {
outRaw.minBoundsX = std::numeric_limits<float>::max();
outRaw.minBoundsZ = std::numeric_limits<float>::max();
outRaw.maxBoundsX = std::numeric_limits<float>::lowest();
outRaw.maxBoundsZ = std::numeric_limits<float>::lowest();
for (const auto& chunk : outRaw.chunks) {
// Calculate chunk bounds
const float chunkMinX = chunk.offsetX;
const float chunkMinZ = chunk.offsetZ;
const float chunkMaxX = chunkMinX + (chunk.width * chunk.scaleFactor);
const float chunkMaxZ = chunkMinZ + (chunk.height * chunk.scaleFactor);
// Update overall bounds
outRaw.minBoundsX = std::min(outRaw.minBoundsX, chunkMinX);
outRaw.minBoundsZ = std::min(outRaw.minBoundsZ, chunkMinZ);
outRaw.maxBoundsX = std::max(outRaw.maxBoundsX, chunkMaxX);
outRaw.maxBoundsZ = std::max(outRaw.maxBoundsZ, chunkMaxZ);
} LOG("Raw terrain bounds: X[%.2f, %.2f], Z[%.2f, %.2f]",
outRaw.minBoundsX, outRaw.maxBoundsX, outRaw.minBoundsZ, outRaw.maxBoundsZ);
}
} return true;
} catch (const std::exception&) {
return false;
}
@@ -302,40 +322,32 @@ namespace Raw {
const uint32_t heightIndex = chunk.width * i + j;
if (heightIndex >= chunk.heightMap.size()) continue;
const float y = chunk.heightMap[heightIndex];
const float y = chunk.heightMap[heightIndex];
// Calculate world position
// Based on RawFile::GenerateFinalMeshFromChunks in dTerrain:
// tempVert.SetX(tempVert.GetX() + (chunk->m_X / chunk->m_HeightMap->m_ScaleFactor));
// tempVert.SetY(tempVert.GetY() / chunk->m_HeightMap->m_ScaleFactor);
// tempVert.SetZ(tempVert.GetZ() + (chunk->m_Z / chunk->m_HeightMap->m_ScaleFactor));
// tempVert *= chunk->m_HeightMap->m_ScaleFactor;
// Calculate world position
const float worldX = ((i) + (chunk.offsetX / chunk.scaleFactor)) * chunk.scaleFactor;
const float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
const float worldZ = ((j) + (chunk.offsetZ / chunk.scaleFactor)) * chunk.scaleFactor;
float worldX = (static_cast<float>(i) + (chunk.offsetWorldX / chunk.scaleFactor)) * chunk.scaleFactor;
float worldY = (y / chunk.scaleFactor) * chunk.scaleFactor;
float worldZ = (static_cast<float>(j) + (chunk.offsetWorldZ / chunk.scaleFactor)) * chunk.scaleFactor;
const NiPoint3 worldPos(worldX, worldY, worldZ);
NiPoint3 worldPos(worldX, worldY, worldZ);
// Get scene ID at this position
// Map heightmap position to scene map position
// The scene map is colorMapResolution x colorMapResolution
// We need to map from heightmap coordinates (i, j) to scene map coordinates
const float sceneMapI = ((i) / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
const float sceneMapJ = ((j) / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
// Get scene ID at this position
// Map heightmap position to scene map position
// The scene map is colorMapResolution x colorMapResolution
// We need to map from heightmap coordinates (i, j) to scene map coordinates
const float sceneMapI = (static_cast<float>(i) / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapJ = (static_cast<float>(j) / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
// Scene map uses the same indexing pattern as heightmap: row * width + col
const uint32_t sceneIndex = sceneI * chunk.colorMapResolution + sceneJ;
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);
// Scene map uses the same indexing pattern as heightmap: row * width + col
const uint32_t sceneIndex = sceneI * chunk.colorMapResolution + sceneJ;
uint8_t sceneID = 0;
if (sceneIndex < chunk.sceneMap.size()) {
sceneID = chunk.sceneMap[sceneIndex];
}
outMesh.vertices.emplace_back(worldPos, sceneID);
// Generate triangles (same pattern as dTerrain)
uint8_t sceneID = 0;
if (sceneIndex < chunk.sceneMap.size()) {
sceneID = chunk.sceneMap[sceneIndex];
}
outMesh.vertices.emplace_back(worldPos, sceneID);
if (i > 0 && j > 0) {
const uint32_t currentVert = vertexOffset + chunk.width * i + j;
const uint32_t leftVert = currentVert - 1;

View File

@@ -68,8 +68,8 @@ struct Chunk {
uint32_t id;
uint32_t width;
uint32_t height;
float offsetWorldX;
float offsetWorldZ;
float offsetX;
float offsetZ;
uint32_t shaderId;
// Texture IDs (4 textures per chunk)
@@ -119,6 +119,12 @@ struct Raw {
uint32_t numChunksWidth = 0;
uint32_t numChunksHeight = 0;
std::vector<Chunk> chunks;
// Calculated bounds of the entire terrain
float minBoundsX = 0.0f;
float minBoundsZ = 0.0f;
float maxBoundsX = 0.0f;
float maxBoundsZ = 0.0f;
};
/**

View File

@@ -313,23 +313,27 @@ LWOSCENEID dZoneManager::GetSceneIDFromPosition(const NiPoint3& position) const
return LWOSCENEID_INVALID;
}
// Convert 3D position to 2D (XZ plane) and clamp to terrain bounds
float posX = std::clamp(position.x, raw.minBoundsX, raw.maxBoundsX);
float posZ = std::clamp(position.z, raw.minBoundsZ, raw.maxBoundsZ);
// Find the chunk containing this position
// Reverse the world position calculation from GenerateTerrainMesh
for (const auto& chunk : raw.chunks) {
if (chunk.sceneMap.empty()) continue;
// Reverse: worldX = (i + offsetWorldX/scaleFactor) * scaleFactor
// Therefore: i = worldX/scaleFactor - offsetWorldX/scaleFactor
const float heightI = position.x / chunk.scaleFactor - (chunk.offsetWorldX / chunk.scaleFactor);
const float heightJ = position.z / chunk.scaleFactor - (chunk.offsetWorldZ / chunk.scaleFactor);
// Reverse: worldX = (i + offsetX/scaleFactor) * scaleFactor
// Therefore: i = worldX/scaleFactor - offsetX/scaleFactor
const float heightI = posX / chunk.scaleFactor - (chunk.offsetX / chunk.scaleFactor);
const float heightJ = posZ / chunk.scaleFactor - (chunk.offsetZ / chunk.scaleFactor);
// Check if position is within this chunk's heightmap bounds
if (heightI >= 0.0f && heightI < chunk.width &&
heightJ >= 0.0f && heightJ < chunk.height) {
if (heightI >= 0.0f && heightI < static_cast<float>(chunk.width) &&
heightJ >= 0.0f && heightJ < static_cast<float>(chunk.height)) {
// Map heightmap position to scene map position (same as GenerateTerrainMesh)
const float sceneMapI = (heightI / (chunk.width - 1)) * (chunk.colorMapResolution - 1);
const float sceneMapJ = (heightJ / (chunk.height - 1)) * (chunk.colorMapResolution - 1);
const float sceneMapI = (heightI / static_cast<float>(chunk.width - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const float sceneMapJ = (heightJ / static_cast<float>(chunk.height - 1)) * static_cast<float>(chunk.colorMapResolution - 1);
const uint32_t sceneI = std::min(static_cast<uint32_t>(sceneMapI), chunk.colorMapResolution - 1);
const uint32_t sceneJ = std::min(static_cast<uint32_t>(sceneMapJ), chunk.colorMapResolution - 1);