DarkflameServer/tests/dCommonTests/AMFDeserializeTests.cpp
David Markowitz 5942182486
feat: Abstract Logger and simplify code (#1207)
* Logger: Rename logger to Logger from dLogger

* Logger: Add compile time filename

Fix include issues
Add writers
Add macros
Add macro to force compilation

* Logger: Replace calls with macros

Allows for filename and line number to be logged

* Logger: Add comments

and remove extra define

Logger: Replace with unique_ptr

also flush console at exit. regular file writer should be flushed on file close.

Logger: Remove constexpr on variable

* Logger: Simplify code

* Update Logger.cpp
2023-10-21 16:31:55 -07:00

448 lines
12 KiB
C++

#include <fstream>
#include <memory>
#include <gtest/gtest.h>
#include "AMFDeserialize.h"
#include "Amf3.h"
#include "Game.h"
#include "Logger.h"
/**
* Helper method that all tests use to get their respective AMF.
*/
AMFBaseValue* ReadFromBitStream(RakNet::BitStream* bitStream) {
AMFDeserialize deserializer;
AMFBaseValue* returnValue(deserializer.Read(bitStream));
return returnValue;
}
/**
* @brief Test reading an AMFUndefined value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFUndefinedTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x00);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Undefined);
}
/**
* @brief Test reading an AMFNull value from a BitStream.
*
*/
TEST(dCommonTests, AMFDeserializeAMFNullTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x01);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Null);
}
/**
* @brief Test reading an AMFFalse value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFFalseTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x02);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::False);
}
/**
* @brief Test reading an AMFTrue value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFTrueTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x03);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::True);
}
/**
* @brief Test reading an AMFInteger value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFIntegerTest) {
CBITSTREAM;
{
bitStream.Write<uint8_t>(0x04);
// 127 == 01111111
bitStream.Write<uint8_t>(127);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Integer);
// Check that the max value of a byte can be read correctly
ASSERT_EQ(static_cast<AMFIntValue*>(res.get())->GetValue(), 127);
}
bitStream.Reset();
{
bitStream.Write<uint8_t>(0x04);
bitStream.Write<uint32_t>(UINT32_MAX);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Integer);
// Check that we can read the maximum value correctly
ASSERT_EQ(static_cast<AMFIntValue*>(res.get())->GetValue(), 536870911);
}
bitStream.Reset();
{
bitStream.Write<uint8_t>(0x04);
// 131 == 10000011
bitStream.Write<uint8_t>(131);
// 255 == 11111111
bitStream.Write<uint8_t>(255);
// 127 == 01111111
bitStream.Write<uint8_t>(127);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Integer);
// Check that short max can be read correctly
ASSERT_EQ(static_cast<AMFIntValue*>(res.get())->GetValue(), UINT16_MAX);
}
bitStream.Reset();
{
bitStream.Write<uint8_t>(0x04);
// 255 == 11111111
bitStream.Write<uint8_t>(255);
// 127 == 01111111
bitStream.Write<uint8_t>(127);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Integer);
// Check that 2 byte max can be read correctly
ASSERT_EQ(static_cast<AMFIntValue*>(res.get())->GetValue(), 16383);
}
}
/**
* @brief Test reading an AMFDouble value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFDoubleTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x05);
bitStream.Write<double>(25346.4f);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Double);
ASSERT_EQ(static_cast<AMFDoubleValue*>(res.get())->GetValue(), 25346.4f);
}
/**
* @brief Test reading an AMFString value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFStringTest) {
CBITSTREAM;
bitStream.Write<uint8_t>(0x06);
bitStream.Write<uint8_t>(0x0F);
std::string toWrite = "stateID";
for (auto e : toWrite) bitStream.Write<char>(e);
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::String);
ASSERT_EQ(static_cast<AMFStringValue*>(res.get())->GetValue(), "stateID");
}
/**
* @brief Test reading an AMFArray value from a BitStream.
*/
TEST(dCommonTests, AMFDeserializeAMFArrayTest) {
CBITSTREAM;
// Test empty AMFArray
bitStream.Write<uint8_t>(0x09);
bitStream.Write<uint8_t>(0x01);
bitStream.Write<uint8_t>(0x01);
{
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Array);
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->GetAssociative().size(), 0);
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->GetDense().size(), 0);
}
bitStream.Reset();
// Test a key'd value and dense value
bitStream.Write<uint8_t>(0x09);
bitStream.Write<uint8_t>(0x03);
bitStream.Write<uint8_t>(0x15);
for (auto e : "BehaviorID") if (e != '\0') bitStream.Write<char>(e);
bitStream.Write<uint8_t>(0x06);
bitStream.Write<uint8_t>(0x0B);
for (auto e : "10447") if (e != '\0') bitStream.Write<char>(e);
bitStream.Write<uint8_t>(0x01);
bitStream.Write<uint8_t>(0x06);
bitStream.Write<uint8_t>(0x0B);
for (auto e : "10447") if (e != '\0') bitStream.Write<char>(e);
{
std::unique_ptr<AMFBaseValue> res(ReadFromBitStream(&bitStream));
ASSERT_EQ(res->GetValueType(), eAmf::Array);
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->GetAssociative().size(), 1);
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->GetDense().size(), 1);
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->Get<std::string>("BehaviorID")->GetValue(), "10447");
ASSERT_EQ(static_cast<AMFArrayValue*>(res.get())->Get<std::string>(0)->GetValue(), "10447");
}
}
/**
* @brief This test checks that if we recieve an unimplemented eAmf
* we correctly throw an error and can actch it.
* Yes this leaks memory.
*/
TEST(dCommonTests, AMFDeserializeUnimplementedValuesTest) {
std::vector<eAmf> unimplementedValues = {
eAmf::XMLDoc,
eAmf::Date,
eAmf::Object,
eAmf::XML,
eAmf::ByteArray,
eAmf::VectorInt,
eAmf::VectorUInt,
eAmf::VectorDouble,
eAmf::VectorObject,
eAmf::Dictionary
};
// Run unimplemented tests to check that errors are thrown if
// unimplemented AMF values are attempted to be parsed.
std::ifstream fileStream;
fileStream.open("AMFBitStreamUnimplementedTest.bin", std::ios::binary);
// Read a test BitStream from a file
std::vector<char> baseBitStream;
char byte = 0;
while (fileStream.get(byte)) {
baseBitStream.push_back(byte);
}
fileStream.close();
for (auto value : unimplementedValues) {
RakNet::BitStream testBitStream;
for (auto element : baseBitStream) {
testBitStream.Write(element);
}
testBitStream.Write(value);
bool caughtException = false;
try {
ReadFromBitStream(&testBitStream);
} catch (eAmf unimplementedValueType) {
caughtException = true;
}
ASSERT_EQ(caughtException, true);
}
}
/**
* @brief Test reading a packet capture from live from a BitStream
*/
TEST(dCommonTests, AMFDeserializeLivePacketTest) {
std::ifstream testFileStream;
testFileStream.open("AMFBitStreamTest.bin", std::ios::binary);
// Read a test BitStream from a file
RakNet::BitStream testBitStream;
char byte = 0;
while (testFileStream.get(byte)) {
testBitStream.Write<char>(byte);
}
testFileStream.close();
std::unique_ptr<AMFBaseValue> resultFromFn(ReadFromBitStream(&testBitStream));
auto result = static_cast<AMFArrayValue*>(resultFromFn.get());
// Test the outermost array
ASSERT_EQ(result->Get<std::string>("BehaviorID")->GetValue(), "10447");
ASSERT_EQ(result->Get<std::string>("objectID")->GetValue(), "288300744895913279");
// Test the execution state array
auto executionState = result->GetArray("executionState");
ASSERT_NE(executionState, nullptr);
auto strips = executionState->GetArray("strips")->GetDense();
ASSERT_EQ(strips.size(), 1);
auto stripsPosition0 = dynamic_cast<AMFArrayValue*>(strips[0]);
auto actionIndex = stripsPosition0->Get<double>("actionIndex");
ASSERT_EQ(actionIndex->GetValue(), 0.0f);
auto stripIdExecution = stripsPosition0->Get<double>("id");
ASSERT_EQ(stripIdExecution->GetValue(), 0.0f);
auto stateIdExecution = executionState->Get<double>("stateID");
ASSERT_EQ(stateIdExecution->GetValue(), 0.0f);
auto states = result->GetArray("states")->GetDense();
ASSERT_EQ(states.size(), 1);
auto firstState = dynamic_cast<AMFArrayValue*>(states[0]);
auto stateID = firstState->Get<double>("id");
ASSERT_EQ(stateID->GetValue(), 0.0f);
auto stripsInState = firstState->GetArray("strips")->GetDense();
ASSERT_EQ(stripsInState.size(), 1);
auto firstStrip = dynamic_cast<AMFArrayValue*>(stripsInState[0]);
auto actionsInFirstStrip = firstStrip->GetArray("actions")->GetDense();
ASSERT_EQ(actionsInFirstStrip.size(), 3);
auto actionID = firstStrip->Get<double>("id");
ASSERT_EQ(actionID->GetValue(), 0.0f);
auto uiArray = firstStrip->GetArray("ui");
auto xPos = uiArray->Get<double>("x");
auto yPos = uiArray->Get<double>("y");
ASSERT_EQ(xPos->GetValue(), 103.0f);
ASSERT_EQ(yPos->GetValue(), 82.0f);
auto stripId = firstStrip->Get<double>("id");
ASSERT_EQ(stripId->GetValue(), 0.0f);
auto firstAction = dynamic_cast<AMFArrayValue*>(actionsInFirstStrip[0]);
auto firstType = firstAction->Get<std::string>("Type");
ASSERT_EQ(firstType->GetValue(), "OnInteract");
auto firstCallback = firstAction->Get<std::string>("__callbackID__");
ASSERT_EQ(firstCallback->GetValue(), "");
auto secondAction = dynamic_cast<AMFArrayValue*>(actionsInFirstStrip[1]);
auto secondType = secondAction->Get<std::string>("Type");
ASSERT_EQ(secondType->GetValue(), "FlyUp");
auto secondCallback = secondAction->Get<std::string>("__callbackID__");
ASSERT_EQ(secondCallback->GetValue(), "");
auto secondDistance = secondAction->Get<double>("Distance");
ASSERT_EQ(secondDistance->GetValue(), 25.0f);
auto thirdAction = dynamic_cast<AMFArrayValue*>(actionsInFirstStrip[2]);
auto thirdType = thirdAction->Get<std::string>("Type");
ASSERT_EQ(thirdType->GetValue(), "FlyDown");
auto thirdCallback = thirdAction->Get<std::string>("__callbackID__");
ASSERT_EQ(thirdCallback->GetValue(), "");
auto thirdDistance = thirdAction->Get<double>("Distance");
ASSERT_EQ(thirdDistance->GetValue(), 25.0f);
}
/**
* @brief Tests that having no BitStream returns a nullptr.
*/
TEST(dCommonTests, AMFDeserializeNullTest) {
std::unique_ptr<AMFBaseValue> result(ReadFromBitStream(nullptr));
ASSERT_EQ(result.get(), nullptr);
}
TEST(dCommonTests, AMFBadConversionTest) {
std::ifstream testFileStream;
testFileStream.open("AMFBitStreamTest.bin", std::ios::binary);
// Read a test BitStream from a file
RakNet::BitStream testBitStream;
char byte = 0;
while (testFileStream.get(byte)) {
testBitStream.Write<char>(byte);
}
testFileStream.close();
std::unique_ptr<AMFBaseValue> resultFromFn(ReadFromBitStream(&testBitStream));
auto result = static_cast<AMFArrayValue*>(resultFromFn.get());
// Actually a string value.
ASSERT_EQ(result->Get<double>("BehaviorID"), nullptr);
// Does not exist in the associative portion
ASSERT_EQ(result->Get<nullptr_t>("DOES_NOT_EXIST"), nullptr);
result->Push(true);
// Exists and is correct type
ASSERT_NE(result->Get<bool>(0), nullptr);
// Value exists but is wrong typing
ASSERT_EQ(result->Get<std::string>(0), nullptr);
// Value is out of bounds
ASSERT_EQ(result->Get<bool>(1), nullptr);
}
/**
* Below is the AMF that is in the AMFBitStreamTest.bin file that we are reading in
* from a bitstream to test.
args: amf3!
{
"objectID": "288300744895913279",
"BehaviorID": "10447",
"executionState": amf3!
{
"strips": amf3!
[
amf3!
{
"actionIndex": 0.0,
"id": 0.0,
},
],
"stateID": 0.0,
},
"states": amf3!
[
amf3!
{
"id": 0.0,
"strips": amf3!
[
amf3!
{
"actions": amf3!
[
amf3!
{
"Type": "OnInteract",
"__callbackID__": "",
},
amf3!
{
"Distance": 25.0,
"Type": "FlyUp",
"__callbackID__": "",
},
amf3!
{
"Distance": 25.0,
"Type": "FlyDown",
"__callbackID__": "",
},
],
"id": 0.0,
"ui": amf3!
{
"x": 103.0,
"y": 82.0,
},
},
],
},
],
}
*/