mirror of
https://github.com/DarkflameUniverse/DarkflameServer.git
synced 2025-01-15 09:17:05 +00:00
0545adfac3
Have fun!
1259 lines
22 KiB
C++
1259 lines
22 KiB
C++
///
|
|
/// \brief \b [Internal] SHA-1 computation class
|
|
///
|
|
/// Performant RSA en/decryption with 256-bit to 16384-bit modulus
|
|
///
|
|
/// catid(cat02e@fsu.edu)
|
|
///
|
|
/// 7/30/2004 Fixed VS6 compat
|
|
/// 7/26/2004 Now internally generates private keys
|
|
/// simpleModExp() is faster for encryption than MontyModExp
|
|
/// CRT-MontyModExp is faster for decryption than CRT-SimpleModExp
|
|
/// 7/25/2004 Implemented Montgomery modular exponentation
|
|
/// Implemented CRT modular exponentation optimization
|
|
/// 7/21/2004 Did some pre-lim coding
|
|
///
|
|
/// Best performance on my 1.8 GHz P4 (mobile):
|
|
/// 1024-bit generate key : 30 seconds
|
|
/// 1024-bit set private key : 100 ms (pre-compute this step)
|
|
/// 1024-bit encryption : 200 usec
|
|
/// 1024-bit decryption : 400 ms
|
|
///
|
|
/// \todo There's a bug in MonModExp() that restricts us to k-1 bits
|
|
///
|
|
/// Tabs: 4 spaces
|
|
/// Dist: public
|
|
|
|
#ifndef RSACRYPT_H
|
|
#define RSACRYPT_H
|
|
|
|
#if !defined(_XBOX360) && !defined(_WIN32_WCE)
|
|
|
|
#define RSASUPPORTGENPRIME
|
|
#include "Export.h"
|
|
/// Can't go under 256 or you'll need to disable the USEASSEMBLY macro in bigtypes.h
|
|
/// That's because the assembly assumes at least 128-bit data to work on
|
|
/// #define RSA_BIT_SIZE big::u512
|
|
#define RSA_BIT_SIZE big::u256
|
|
|
|
#include "RakMemoryOverride.h"
|
|
#include "BigTypes.h"
|
|
#include "Rand.h" //Giblet - added missing include for randomMT()
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( push )
|
|
#endif
|
|
|
|
namespace big
|
|
{
|
|
|
|
using namespace cat;
|
|
|
|
// r = x^y Mod n (fast for small y)
|
|
BIGONETYPE void simpleModExp( T &x0, T &y0, T &n0, T &r0 )
|
|
{
|
|
BIGDOUBLESIZE( T, x );
|
|
BIGDOUBLESIZE( T, y );
|
|
BIGDOUBLESIZE( T, n );
|
|
BIGDOUBLESIZE( T, r );
|
|
|
|
usetlow( x, x0 );
|
|
usetlow( y, y0 );
|
|
usetlow( n, n0 );
|
|
usetw( r, 1 );
|
|
|
|
umodulo( x, n, x );
|
|
|
|
u32 squares = 0;
|
|
|
|
for ( u32 ii = 0; ii < BIGWORDCOUNT( T ); ++ii )
|
|
{
|
|
word y_i = y[ ii ];
|
|
|
|
u32 ctr = WORDBITS;
|
|
|
|
while ( y_i )
|
|
{
|
|
if ( y_i & 1 )
|
|
{
|
|
if ( squares )
|
|
do
|
|
{
|
|
usquare( x );
|
|
umodulo( x, n, x );
|
|
}
|
|
|
|
while ( --squares );
|
|
|
|
umultiply( r, x, r );
|
|
|
|
umodulo( r, n, r );
|
|
}
|
|
|
|
y_i >>= 1;
|
|
++squares;
|
|
--ctr;
|
|
}
|
|
|
|
squares += ctr;
|
|
}
|
|
|
|
takelow( r0, r );
|
|
}
|
|
|
|
// computes Rn = 2^k (mod n), n < 2^k
|
|
BIGONETYPE void rModn( T &n, T &Rn )
|
|
{
|
|
BIGDOUBLESIZE( T, dR );
|
|
BIGDOUBLESIZE( T, dn );
|
|
BIGDOUBLESIZE( T, dRn );
|
|
T one;
|
|
|
|
// dR = 2^k
|
|
usetw( one, 1 );
|
|
sethigh( dR, one );
|
|
|
|
// Rn = 2^k (mod n)
|
|
usetlow( dn, n );
|
|
umodulo( dR, dn, dRn );
|
|
takelow( Rn, dRn );
|
|
}
|
|
|
|
// computes c = GCD(a, b)
|
|
BIGONETYPE void GCD( T &a0, T &b0, T &c )
|
|
{
|
|
T a;
|
|
|
|
umodulo( a0, b0, c );
|
|
|
|
if ( isZero( c ) )
|
|
{
|
|
set ( c, b0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
umodulo( b0, c, a );
|
|
|
|
if ( isZero( a ) )
|
|
return ;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
|
|
#endif
|
|
while ( true )
|
|
{
|
|
umodulo( c, a, c );
|
|
|
|
if ( isZero( c ) )
|
|
{
|
|
set ( c, a )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
umodulo( a, c, a );
|
|
|
|
if ( isZero( a ) )
|
|
return ;
|
|
}
|
|
}
|
|
|
|
// directly computes x = c - a * b (mod n) > 0, c < n
|
|
BIGONETYPE void SubMulMod( T &a, T &b, T &c, T &n, T &x )
|
|
{
|
|
BIGDOUBLESIZE( T, da );
|
|
BIGDOUBLESIZE( T, dn );
|
|
T y;
|
|
|
|
// y = a b (mod n)
|
|
usetlow( da, a );
|
|
umultiply( da, b );
|
|
usetlow( dn, n );
|
|
umodulo( da, dn, da );
|
|
takelow( y, da );
|
|
|
|
// x = (c - y) (mod n) > 0
|
|
|
|
set ( x, c )
|
|
|
|
;
|
|
if ( ugreater( c, y ) )
|
|
{
|
|
subtract( x, y );
|
|
}
|
|
|
|
else
|
|
{
|
|
subtract( x, y );
|
|
|
|
add ( x, n )
|
|
|
|
;
|
|
}
|
|
}
|
|
|
|
/*
|
|
directly compute a' s.t. a' a - b' b = 1
|
|
|
|
b = b0 = n0
|
|
rp = a'
|
|
a = 2^k
|
|
a > b > 0
|
|
GCD(a, b) = 1 (b odd)
|
|
|
|
Trying to keep everything positive
|
|
*/
|
|
BIGONETYPE void computeRinverse( T &n0, T &rp )
|
|
{
|
|
T x0, x1, x2, a, b, q;
|
|
|
|
//x[0] = 1
|
|
usetw( x0, 1 );
|
|
|
|
// a = 2^k (mod b0)
|
|
rModn( n0, a );
|
|
|
|
// {q, b} = b0 / a
|
|
udivide( n0, a, q, b );
|
|
|
|
// if b = 0, return x[0]
|
|
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( rp, x0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[1] = -q (mod b0) = b0 - q, q <= b0
|
|
set ( x1, n0 )
|
|
|
|
;
|
|
subtract( x1, q );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[1]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( rp, x1 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
|
|
#endif
|
|
while ( true )
|
|
{
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod( q, x1, x0, n0, x2 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[2]
|
|
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( rp, x2 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod( q, x2, x1, n0, x0 );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[0]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( rp, x0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod( q, x0, x2, n0, x1 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[1]
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( rp, x1 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod( q, x1, x0, n0, x2 );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[2]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( rp, x2 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod( q, x2, x1, n0, x0 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[0]
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( rp, x0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod( q, x0, x2, n0, x1 );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[1]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( rp, x1 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* BIGONETYPE void computeRinverse2(T &_n0, T &_rp)
|
|
{
|
|
//T x0, x1, x2, a, b, q;
|
|
BIGDOUBLESIZE(T, x0);
|
|
BIGDOUBLESIZE(T, x1);
|
|
BIGDOUBLESIZE(T, x2);
|
|
BIGDOUBLESIZE(T, a);
|
|
BIGDOUBLESIZE(T, b);
|
|
BIGDOUBLESIZE(T, q);
|
|
BIGDOUBLESIZE(T, n0);
|
|
BIGDOUBLESIZE(T, rp);
|
|
|
|
usetlow(n0, _n0);
|
|
usetlow(rp, _rp);
|
|
|
|
std::string old;
|
|
//x[0] = 1
|
|
usetw(x0, 1);
|
|
|
|
T _a;
|
|
// a = 2^k (mod b0)
|
|
rModn(_n0, _a);
|
|
RECORD("TEST") << "a=" << toString(a, false) << " = 2^k (mod " << toString(n0, false) << ")";
|
|
usetlow(a, _a);
|
|
|
|
// {q, b} = b0 / a
|
|
udivide(n0, a, q, b);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b, false) << "} = n0=" << toString(n0, false) << " / a=" << toString(a, false);
|
|
|
|
// if b = 0, return x[0]
|
|
if (isZero(b))
|
|
{
|
|
RECORD("TEST") << "b == 0, Returning x[0]";
|
|
set(rp, x0);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[1] = -q (mod b0)
|
|
negate(q);
|
|
smodulo(q, n0, x1);
|
|
if (BIGHIGHBIT(x1))
|
|
add(x1, n0); // q > 0
|
|
RECORD("TEST") << "x1=" << toString(x1, false) << " = q=" << toString(q, false) << " (mod n0=" << toString(n0, false) << ")";
|
|
|
|
// {q, a} = a / b
|
|
old = toString(a, false);
|
|
udivide(a, b, q, a);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
|
|
|
|
// if a = 0, return x[1]
|
|
if (isZero(a))
|
|
{
|
|
RECORD("TEST") << "a == 0, Returning x[1]";
|
|
set(rp, x1);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
RECORD("TEST") << "Entering loop...";
|
|
while (true)
|
|
{
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod(q, x1, x0, n0, x2);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, b} = b / a
|
|
old = toString(b);
|
|
udivide(b, a, q, b);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
|
|
|
|
// if b = 0, return x[2]
|
|
if (isZero(b))
|
|
{
|
|
RECORD("TEST") << "b == 0, Returning x[2]";
|
|
set(rp, x2);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod(q, x2, x1, n0, x0);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, a} = a / b
|
|
old = toString(a, false);
|
|
udivide(a, b, q, a);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
|
|
|
|
// if a = 0, return x[0]
|
|
if (isZero(a))
|
|
{
|
|
RECORD("TEST") << "a == 0, Returning x[0]";
|
|
set(rp, x0);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod(q, x0, x2, n0, x1);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, b} = b / a
|
|
old = toString(b);
|
|
udivide(b, a, q, b);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
|
|
|
|
// if b = 0, return x[1]
|
|
if (isZero(b))
|
|
{
|
|
RECORD("TEST") << "b == 0, Returning x[1]";
|
|
set(rp, x1);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod(q, x1, x0, n0, x2);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, a} = a / b
|
|
old = toString(a, false);
|
|
udivide(a, b, q, a);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
|
|
|
|
// if a = 0, return x[2]
|
|
if (isZero(a))
|
|
{
|
|
RECORD("TEST") << "a == 0, Returning x[2]";
|
|
set(rp, x2);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod(q, x2, x1, n0, x0);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, b} = b / a
|
|
old = toString(b);
|
|
udivide(b, a, q, b);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
|
|
|
|
// if b = 0, return x[0]
|
|
if (isZero(b))
|
|
{
|
|
RECORD("TEST") << "b == 0, Returning x[0]";
|
|
set(rp, x0);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod(q, x0, x2, n0, x1);
|
|
RECORD("TEST") << "x[0] = " << toString(x0, false);
|
|
RECORD("TEST") << "x[1] = " << toString(x1, false);
|
|
RECORD("TEST") << "x[2] = " << toString(x2, false);
|
|
|
|
// {q, a} = a / b
|
|
old = toString(a, false);
|
|
udivide(a, b, q, a);
|
|
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
|
|
|
|
// if a = 0, return x[1]
|
|
if (isZero(a))
|
|
{
|
|
RECORD("TEST") << "a == 0, Returning x[1]";
|
|
set(rp, x1);
|
|
takelow(_rp, rp);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
// directly compute a^-1 s.t. a^-1 a (mod b) = 1, a < b, GCD(a, b)
|
|
BIGONETYPE void computeModularInverse( T &a0, T &b0, T &ap )
|
|
{
|
|
T x0, x1, x2;
|
|
T a, b, q;
|
|
|
|
// x[2] = 1
|
|
usetw( x2, 1 );
|
|
|
|
// {q, b} = b0 / a0
|
|
udivide( b0, a0, q, b );
|
|
|
|
// x[0] = -q (mod b0) = b0 - q, q <= b0
|
|
|
|
set ( x0, b0 )
|
|
|
|
;
|
|
subtract( x0, q );
|
|
|
|
set ( a, a0 )
|
|
|
|
;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
|
|
#endif
|
|
while ( true )
|
|
{
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[0]
|
|
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( ap, x0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod( x0, q, x2, b0, x1 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[1]
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( ap, x1 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod( x1, q, x0, b0, x2 );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[2]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( ap, x2 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod( x2, q, x1, b0, x0 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[0]
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( ap, x0 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[1] = x[2] - x[0] * q (mod b0)
|
|
SubMulMod( x0, q, x2, b0, x1 );
|
|
|
|
// {q, a} = a / b
|
|
udivide( a, b, q, a );
|
|
|
|
// if a = 0, return x[1]
|
|
if ( isZero( a ) )
|
|
{
|
|
set ( ap, x1 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[2] = x[0] - x[1] * q (mod b0)
|
|
SubMulMod( x1, q, x0, b0, x2 );
|
|
|
|
// {q, b} = b / a
|
|
udivide( b, a, q, b );
|
|
|
|
// if b = 0, return x[2]
|
|
if ( isZero( b ) )
|
|
{
|
|
set ( ap, x2 )
|
|
|
|
;
|
|
return ;
|
|
}
|
|
|
|
// x[0] = x[1] - x[2] * q (mod b0)
|
|
SubMulMod( x2, q, x1, b0, x0 );
|
|
}
|
|
}
|
|
|
|
// indirectly computes n' s.t. 1 = r' r - n' n = GCD(r, n)
|
|
BIGONETYPE void computeNRinverse( T &n0, T &np )
|
|
{
|
|
BIGDOUBLESIZE( T, r );
|
|
BIGDOUBLESIZE( T, n );
|
|
|
|
// r' = (1 + n' n) / r
|
|
computeRinverse( n0, np );
|
|
|
|
// n' = (r' r - 1) / n
|
|
sethigh( r, np ); // special case of r = 2^k
|
|
decrement( r );
|
|
usetlow( n, n0 );
|
|
udivide( r, n, n, r );
|
|
takelow( np, n );
|
|
}
|
|
|
|
/*
|
|
// indirectly computes n' s.t. 1 = r' r - n' n = GCD(r, n)
|
|
BIGONETYPE void computeNRinverse2(T &n0, T &np)
|
|
{
|
|
BIGDOUBLESIZE(T, r);
|
|
BIGDOUBLESIZE(T, n);
|
|
|
|
// r' = (1 + n' n) / r
|
|
computeRinverse2(n0, np);
|
|
|
|
// n' = (r' r - 1) / n
|
|
sethigh(r, np); // special case of r = 2^k
|
|
decrement(r);
|
|
usetlow(n, n0);
|
|
udivide(r, n, n, r);
|
|
takelow(np, n);
|
|
}
|
|
*/
|
|
// Montgomery product u = a * b (mod n)
|
|
BIGONETYPE void MonPro( T &ap, T &bp, T &n, T &np, T &u_out )
|
|
{
|
|
BIGDOUBLESIZE( T, t );
|
|
BIGDOUBLESIZE( T, u );
|
|
T m;
|
|
|
|
// t = a' b'
|
|
umultiply( ap, bp, t );
|
|
|
|
// m = (low half of t)*np (mod r)
|
|
takelow( m, t );
|
|
umultiply( m, np );
|
|
|
|
// u = (t + m*n), u_out = u / r = high half of u
|
|
umultiply( m, n, u );
|
|
|
|
add ( u, t )
|
|
|
|
;
|
|
takehigh( u_out, u );
|
|
|
|
// if u >= n, return u - n, else u
|
|
if ( ugreaterOrEqual( u_out, n ) )
|
|
subtract( u_out, n );
|
|
}
|
|
|
|
// indirectly calculates x = M^e (mod n)
|
|
BIGONETYPE void MonModExp( T &x, T &M, T &e, T &n, T &np, T &xp0 )
|
|
{
|
|
// x' = xp0
|
|
|
|
set ( x, xp0 )
|
|
|
|
;
|
|
|
|
// find M' = M r (mod n)
|
|
BIGDOUBLESIZE( T, dM );
|
|
|
|
BIGDOUBLESIZE( T, dn );
|
|
|
|
T Mp;
|
|
|
|
sethigh( dM, M ); // dM = M r
|
|
|
|
usetlow( dn, n );
|
|
|
|
umodulo( dM, dn, dM ); // dM = dM (mod n)
|
|
|
|
takelow( Mp, dM ); // M' = M r (mod n)
|
|
|
|
/* i may be wrong, but it seems to me that the squaring
|
|
results in a constant until we hit the first set bit
|
|
this could save a lot of time, but it needs to be proven
|
|
*/
|
|
|
|
s32 ii, bc;
|
|
|
|
word e_i;
|
|
|
|
// for i = k - 1 down to 0 do
|
|
for ( ii = BIGWORDCOUNT( T ) - 1; ii >= 0; --ii )
|
|
{
|
|
e_i = e[ ii ];
|
|
bc = WORDBITS;
|
|
|
|
while ( bc-- )
|
|
{
|
|
// if e_i = 1, x = MonPro(M', x')
|
|
|
|
if ( e_i & WORDHIGHBIT )
|
|
goto start_squaring;
|
|
|
|
e_i <<= 1;
|
|
}
|
|
}
|
|
|
|
for ( ; ii >= 0; --ii )
|
|
{
|
|
e_i = e[ ii ];
|
|
bc = WORDBITS;
|
|
|
|
while ( bc-- )
|
|
{
|
|
// x' = MonPro(x', x')
|
|
MonPro( x, x, n, np, x );
|
|
|
|
// if e_i = 1, x = MonPro(M', x')
|
|
|
|
if ( e_i & WORDHIGHBIT )
|
|
{
|
|
|
|
start_squaring:
|
|
MonPro( Mp, x, n, np, x );
|
|
}
|
|
|
|
e_i <<= 1;
|
|
}
|
|
}
|
|
|
|
// x = MonPro(x', 1)
|
|
T one;
|
|
|
|
usetw( one, 1 );
|
|
|
|
MonPro( x, one, n, np, x );
|
|
}
|
|
|
|
// indirectly calculates x = C ^ d (mod n) using the Chinese Remainder Thm
|
|
BIGTWOTYPES void CRTModExp( Bigger &x, Bigger &C, Bigger &d, T &p, T &q, T &pInverse, T &pnp, T &pxp, T &qnp, T &qxp )
|
|
{
|
|
(void) qxp;
|
|
(void) pxp;
|
|
(void) pnp;
|
|
(void) qnp;
|
|
|
|
// d1 = d mod (p - 1)
|
|
Bigger dd1;
|
|
T d1;
|
|
usetlow( dd1, p );
|
|
decrement( dd1 );
|
|
umodulo( d, dd1, dd1 );
|
|
takelow( d1, dd1 );
|
|
|
|
// M1 = C1^d1 (mod p)
|
|
Bigger dp, dC1;
|
|
T M1, C1;
|
|
usetlow( dp, p );
|
|
umodulo( C, dp, dC1 );
|
|
takelow( C1, dC1 );
|
|
simpleModExp( C1, d1, p, M1 );
|
|
//MonModExp(M1, C1, d1, p, pnp, pxp);
|
|
|
|
// d2 = d mod (q - 1)
|
|
Bigger dd2;
|
|
T d2;
|
|
usetlow( dd2, q );
|
|
decrement( dd2 );
|
|
umodulo( d, dd2, dd2 );
|
|
takelow( d2, dd2 );
|
|
|
|
// M2 = C2^d2 (mod q)
|
|
Bigger dq, dC2;
|
|
T M2, C2;
|
|
usetlow( dq, q );
|
|
umodulo( C, dq, dC2 );
|
|
takelow( C2, dC2 );
|
|
simpleModExp( C2, d2, q, M2 );
|
|
//MonModExp(M2, C2, d2, q, qnp, qxp);
|
|
|
|
// x = M1 + p * ((M2 - M1)(p^-1 mod q) mod q)
|
|
|
|
if ( ugreater( M2, M1 ) )
|
|
{
|
|
subtract( M2, M1 );
|
|
}
|
|
|
|
else
|
|
{
|
|
subtract( M2, M1 );
|
|
|
|
add ( M2, q )
|
|
|
|
;
|
|
}
|
|
|
|
// x = M1 + p * (( M2 )(p^-1 mod q) mod q)
|
|
|
|
umultiply( M2, pInverse, x );
|
|
|
|
// x = M1 + p * (( x ) mod q)
|
|
|
|
umodulo( x, dq, x );
|
|
|
|
// x = M1 + p * ( x )
|
|
|
|
umultiply( x, dp );
|
|
|
|
// x = M1 + ( x )
|
|
|
|
Bigger dM1;
|
|
|
|
usetlow( dM1, M1 );
|
|
|
|
// x = ( dM1 ) + ( x )
|
|
|
|
add ( x, dM1 )
|
|
|
|
;
|
|
}
|
|
|
|
// generates a suitable public exponent s.t. 4 < e << phi, GCD(e, phi) = 1
|
|
BIGONETYPE void computePublicExponent( T &phi, T &e )
|
|
{
|
|
T r, one, two;
|
|
usetw( one, 1 );
|
|
usetw( two, 2 );
|
|
usetw( e, 65537 - 2 );
|
|
|
|
if ( ugreater( e, phi ) )
|
|
usetw( e, 5 - 2 );
|
|
|
|
do
|
|
{
|
|
add ( e, two )
|
|
|
|
;
|
|
|
|
GCD( phi, e, r );
|
|
}
|
|
|
|
while ( !equal( r, one ) );
|
|
}
|
|
|
|
// directly computes private exponent
|
|
BIGONETYPE void computePrivateExponent( T &e, T &phi, T &d )
|
|
{
|
|
// d = e^-1 (mod phi), 1 < e << phi
|
|
computeModularInverse( e, phi, d );
|
|
}
|
|
|
|
#ifdef RSASUPPORTGENPRIME
|
|
|
|
static const u16 PRIME_TABLE[ 256 ] =
|
|
{
|
|
3, 5, 7, 11, 13, 17, 19, 23,
|
|
29, 31, 37, 41, 43, 47, 53, 59,
|
|
61, 67, 71, 73, 79, 83, 89, 97,
|
|
101, 103, 107, 109, 113, 127, 131, 137,
|
|
139, 149, 151, 157, 163, 167, 173, 179,
|
|
181, 191, 193, 197, 199, 211, 223, 227,
|
|
229, 233, 239, 241, 251, 257, 263, 269,
|
|
271, 277, 281, 283, 293, 307, 311, 313,
|
|
317, 331, 337, 347, 349, 353, 359, 367,
|
|
373, 379, 383, 389, 397, 401, 409, 419,
|
|
421, 431, 433, 439, 443, 449, 457, 461,
|
|
463, 467, 479, 487, 491, 499, 503, 509,
|
|
521, 523, 541, 547, 557, 563, 569, 571,
|
|
577, 587, 593, 599, 601, 607, 613, 617,
|
|
619, 631, 641, 643, 647, 653, 659, 661,
|
|
673, 677, 683, 691, 701, 709, 719, 727,
|
|
733, 739, 743, 751, 757, 761, 769, 773,
|
|
787, 797, 809, 811, 821, 823, 827, 829,
|
|
839, 853, 857, 859, 863, 877, 881, 883,
|
|
887, 907, 911, 919, 929, 937, 941, 947,
|
|
953, 967, 971, 977, 983, 991, 997, 1009,
|
|
1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051,
|
|
1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103,
|
|
1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171,
|
|
1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
|
|
1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
|
|
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327,
|
|
1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427,
|
|
1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471,
|
|
1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
|
|
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579,
|
|
1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621
|
|
};
|
|
|
|
/*modified Rabin-Miller primality test (added small primes)
|
|
|
|
When picking a value for insurance, note that the probability of failure
|
|
of the test to detect a composite number is at most 4^(-insurance), so:
|
|
insurance max. probability of failure
|
|
3 1.56%
|
|
4 0.39%
|
|
5 0.098% <-- default
|
|
6 0.024%
|
|
...
|
|
*/
|
|
BIGONETYPE bool RabinMillerPrimalityTest( T &n, u32 insurance )
|
|
{
|
|
// check divisibility by small primes <= 1621 (speeds up computation)
|
|
T temp;
|
|
|
|
for ( u32 ii = 0; ii < 256; ++ii )
|
|
{
|
|
usetw( temp, PRIME_TABLE[ ii++ ] );
|
|
|
|
umodulo( n, temp, temp );
|
|
|
|
if ( isZero( temp ) )
|
|
return false;
|
|
}
|
|
|
|
// n1 = n - 1
|
|
T n1;
|
|
|
|
set ( n1, n )
|
|
|
|
;
|
|
decrement( n1 );
|
|
|
|
// write r 2^s = n - 1, r is odd
|
|
T r;
|
|
|
|
u32 s = 0;
|
|
|
|
set ( r, n1 )
|
|
|
|
;
|
|
while ( !( r[ 0 ] & 1 ) )
|
|
{
|
|
ushiftRight1( r );
|
|
++s;
|
|
}
|
|
|
|
// one = 1
|
|
T one;
|
|
|
|
usetw( one, 1 );
|
|
|
|
// cache n -> dn
|
|
BIGDOUBLESIZE( T, dy );
|
|
|
|
BIGDOUBLESIZE( T, dn );
|
|
|
|
usetlow( dn, n );
|
|
|
|
while ( insurance-- )
|
|
{
|
|
// choose random integer a s.t. 1 < a < n - 1
|
|
T a;
|
|
int index;
|
|
|
|
for ( index = 0; index < (int) sizeof( a ) / (int) sizeof( a[ 0 ] ); index++ )
|
|
a[ index ] = randomMT();
|
|
|
|
umodulo( a, n1, a );
|
|
|
|
// compute y = a ^ r (mod n)
|
|
T y;
|
|
|
|
simpleModExp( a, r, n, y );
|
|
|
|
if ( !equal( y, one ) && !equal( y, n1 ) )
|
|
{
|
|
u32 j = s;
|
|
|
|
while ( ( j-- > 1 ) && !equal( y, n1 ) )
|
|
{
|
|
umultiply( y, y, dy );
|
|
umodulo( dy, dn, dy );
|
|
takelow( y, dy );
|
|
|
|
if ( equal( y, one ) )
|
|
return false;
|
|
}
|
|
|
|
if ( !equal( y, n1 ) )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// generates a strong pseudo-prime
|
|
BIGONETYPE void generateStrongPseudoPrime( T &n )
|
|
{
|
|
do
|
|
{
|
|
int index;
|
|
|
|
for ( index = 0; index < (int) sizeof( n ) / (int) sizeof( n[ 0 ] ); index++ )
|
|
n[ index ] = randomMT();
|
|
|
|
n[ BIGWORDCOUNT( T ) - 1 ] |= WORDHIGHBIT;
|
|
|
|
//n[BIGWORDCOUNT(T) - 1] &= ~WORDHIGHBIT; n[BIGWORDCOUNT(T) - 1] |= WORDHIGHBIT >> 1;
|
|
n[ 0 ] |= 1;
|
|
}
|
|
|
|
while ( !RabinMillerPrimalityTest( n, 5 ) );
|
|
}
|
|
|
|
#endif // RSASUPPORTGENPRIME
|
|
|
|
|
|
//////// RSACrypt class ////////
|
|
|
|
BIGONETYPE class RAK_DLL_EXPORT RSACrypt : public RakNet::RakMemoryOverride
|
|
{
|
|
// public key
|
|
T e, n;
|
|
T np, xp;
|
|
|
|
// private key
|
|
bool factorsAvailable;
|
|
T d, phi;
|
|
BIGHALFSIZE( T, p );
|
|
BIGHALFSIZE( T, pnp );
|
|
BIGHALFSIZE( T, pxp );
|
|
BIGHALFSIZE( T, q );
|
|
BIGHALFSIZE( T, qnp );
|
|
BIGHALFSIZE( T, qxp );
|
|
BIGHALFSIZE( T, pInverse );
|
|
|
|
public:
|
|
RSACrypt()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
~RSACrypt()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
public:
|
|
void reset()
|
|
{
|
|
zero( d );
|
|
zero( p );
|
|
zero( q );
|
|
zero( pInverse );
|
|
factorsAvailable = false;
|
|
}
|
|
|
|
#ifdef RSASUPPORTGENPRIME
|
|
|
|
void generateKeys()
|
|
{
|
|
BIGHALFSIZE( T, p0 );
|
|
BIGHALFSIZE( T, q0 );
|
|
|
|
generateStrongPseudoPrime( p0 );
|
|
generateStrongPseudoPrime( q0 );
|
|
|
|
setPrivateKey( p0, q0 );
|
|
}
|
|
|
|
#endif // RSASUPPORTGENPRIME
|
|
|
|
BIGSMALLTYPE void setPrivateKey( Smaller &c_p, Smaller &c_q )
|
|
{
|
|
factorsAvailable = true;
|
|
|
|
// re-order factors s.t. q > p
|
|
|
|
if ( ugreater( c_p, c_q ) )
|
|
{
|
|
set ( q, c_p )
|
|
|
|
;
|
|
set ( p, c_q )
|
|
|
|
;
|
|
}
|
|
|
|
else
|
|
{
|
|
set ( p, c_p )
|
|
|
|
;
|
|
set ( q, c_q )
|
|
|
|
;
|
|
}
|
|
|
|
// phi = (p - 1)(q - 1)
|
|
BIGHALFSIZE( T, p1 );
|
|
|
|
BIGHALFSIZE( T, q1 );
|
|
|
|
set ( p1, p )
|
|
|
|
;
|
|
decrement( p1 );
|
|
|
|
set ( q1, q )
|
|
|
|
;
|
|
decrement( q1 );
|
|
|
|
umultiply( p1, q1, phi );
|
|
|
|
// compute e
|
|
computePublicExponent( phi, e );
|
|
|
|
// compute d
|
|
computePrivateExponent( e, phi, d );
|
|
|
|
// compute p^-1 mod q
|
|
computeModularInverse( p, q, pInverse );
|
|
|
|
// compute n = pq
|
|
umultiply( p, q, n );
|
|
|
|
// find n'
|
|
computeNRinverse( n, np );
|
|
|
|
// x' = 1*r (mod n)
|
|
rModn( n, xp );
|
|
|
|
// find pn'
|
|
computeNRinverse( p, pnp );
|
|
|
|
// computeNRinverse2(p, pnp);
|
|
|
|
// px' = 1*r (mod p)
|
|
rModn( p, pxp );
|
|
|
|
// find qn'
|
|
computeNRinverse( q, qnp );
|
|
|
|
// qx' = 1*r (mod q)
|
|
rModn( q, qxp );
|
|
}
|
|
|
|
void setPublicKey( u32 c_e, T &c_n )
|
|
{
|
|
reset(); // in case we knew a private key
|
|
|
|
usetw( e, c_e );
|
|
|
|
set ( n, c_n )
|
|
|
|
;
|
|
|
|
// find n'
|
|
computeNRinverse( n, np );
|
|
|
|
// x' = 1*r (mod n)
|
|
rModn( n, xp );
|
|
}
|
|
|
|
public:
|
|
void getPublicKey( u32 &c_e, T &c_n )
|
|
{
|
|
c_e = e[ 0 ];
|
|
|
|
set ( c_n, n )
|
|
|
|
;
|
|
}
|
|
|
|
BIGSMALLTYPE void getPrivateKey( Smaller &c_p, Smaller &c_q )
|
|
{
|
|
set ( c_p, p )
|
|
|
|
;
|
|
set ( c_q, q )
|
|
|
|
;
|
|
}
|
|
|
|
public:
|
|
void encrypt( T &M, T &x )
|
|
{
|
|
if ( factorsAvailable )
|
|
CRTModExp( x, M, e, p, q, pInverse, pnp, pxp, qnp, qxp );
|
|
else
|
|
simpleModExp( M, e, n, x );
|
|
}
|
|
|
|
void decrypt( T &C, T &x )
|
|
{
|
|
if ( factorsAvailable )
|
|
CRTModExp( x, C, d, p, q, pInverse, pnp, pxp, qnp, qxp );
|
|
}
|
|
};
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( pop )
|
|
#endif
|
|
|
|
#endif // #if !defined(_XBOX360) && !defined(_WIN32_WCE)
|
|
|
|
#endif // RSACRYPT_H
|
|
|