mirror of
				https://github.com/DarkflameUniverse/DarkflameServer.git
				synced 2025-11-04 06:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			798 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// rijndael-alg-fst.c   v2.0   August '99
 | 
						|
// Optimised ANSI C code
 | 
						|
// authors: v1.0: Antoon Bosselaers
 | 
						|
//          v2.0: Vincent Rijmen
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 *  taken from the 'aescrypt' project: www.sf.net/projects/aescrypt
 | 
						|
 *  See LICENSE-EST for the license applicable to this file
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
// 14.Dec.2005 Cirilo:  Removed silly hex keys; keys are now effectively unsigned char.
 | 
						|
 | 
						|
// KevinJ - TODO - What the hell is __UNUS?  It causes DevCPP not to compile.   I don't know what this is for so I'm taking it out entirely
 | 
						|
/*
 | 
						|
#if (defined(__GNUC__)  || defined(__GCCXML__))
 | 
						|
#define __UNUS	__attribute__((unused))
 | 
						|
#else
 | 
						|
*/
 | 
						|
#define __UNUS
 | 
						|
//#endif
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include "Rijndael.h"
 | 
						|
 | 
						|
// KevinJ - Added this to just generate a random initialization vector
 | 
						|
#include "Rand.h"
 | 
						|
 | 
						|
#define SC	((BC - 4) >> 1)
 | 
						|
 | 
						|
#include "Rijndael-Boxes.h"
 | 
						|
 | 
						|
static int ROUNDS;
 | 
						|
 | 
						|
static word8 shifts[3][4][2] = {
 | 
						|
  {
 | 
						|
    {0, 0},
 | 
						|
    {1, 3},
 | 
						|
    {2, 2},
 | 
						|
    {3, 1}
 | 
						|
  },
 | 
						|
   
 | 
						|
  {
 | 
						|
    {0, 0},
 | 
						|
    {1, 5},
 | 
						|
    {2, 4},
 | 
						|
    {3, 3}
 | 
						|
  },
 | 
						|
   
 | 
						|
  {
 | 
						|
    {0, 0},
 | 
						|
    {1, 7},
 | 
						|
    {3, 5},
 | 
						|
    {4, 4}
 | 
						|
  }
 | 
						|
}; 
 | 
						|
 | 
						|
word8 mul(word8 a, word8 b) {
 | 
						|
   // multiply two elements of GF(2^m)
 | 
						|
   // needed for MixColumn and InvMixColumn
 | 
						|
   
 | 
						|
	if (a && b)
 | 
						|
		return Alogtable[(Logtable[a] + Logtable[b])%255];
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
}
 | 
						|
 | 
						|
void KeyAddition(word8 a[4][4], word8 rk[4][4], word8 BC) {
 | 
						|
	// XOR corresponding text input and round key input bytes
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	for(i = 0; i < BC; i++)
 | 
						|
   	for(j = 0; j < 4; j++)
 | 
						|
			a[i][j] ^= rk[i][j];
 | 
						|
}
 | 
						|
 | 
						|
void ShiftRow(word8 a[4][4], word8 d, word8 BC) {
 | 
						|
	// Row 0 remains unchanged
 | 
						|
	// The other three rows are shifted a variable amount
 | 
						|
	
 | 
						|
	word8 tmp[4];
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	for(i = 1; i < 4; i++) {
 | 
						|
		for(j = 0; j < BC; j++)
 | 
						|
			tmp[j] = a[(j + shifts[SC][i][d]) % BC][i];
 | 
						|
		for(j = 0; j < BC; j++)
 | 
						|
			a[j][i] = tmp[j];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Substitution(word8 a[4][4], word8 box[256], word8 BC) {
 | 
						|
	// Replace every byte of the input by the byte at that place
 | 
						|
	// in the nonlinear S-box
 | 
						|
	
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	for(i = 0; i < BC; i++)
 | 
						|
		for(j = 0; j < 4; j++)
 | 
						|
			a[i][j] = box[a[i][j]] ;
 | 
						|
}
 | 
						|
   
 | 
						|
void MixColumn(word8 a[4][4], word8 BC) {
 | 
						|
      // Mix the four bytes of every column in a linear way
 | 
						|
	
 | 
						|
	word8 b[4][4];
 | 
						|
	int i, j;
 | 
						|
		
 | 
						|
	for(j = 0; j < BC; j++)
 | 
						|
		for(i = 0; i < 4; i++)
 | 
						|
			b[j][i] = mul(2,a[j][i])
 | 
						|
				^ mul(3,a[j][(i + 1) % 4])
 | 
						|
				^ a[j][(i + 2) % 4]
 | 
						|
				^ a[j][(i + 3) % 4];
 | 
						|
	for(i = 0; i < 4; i++)
 | 
						|
		for(j = 0; j < BC; j++)
 | 
						|
			a[j][i] = b[j][i];
 | 
						|
}
 | 
						|
 | 
						|
void InvMixColumn(word8 a[4][4], word8 BC) {
 | 
						|
  // Mix the four bytes of every column in a linear way
 | 
						|
	// This is the opposite operation of Mixcolumn
 | 
						|
	
 | 
						|
	int j;
 | 
						|
 | 
						|
	for(j = 0; j < BC; j++)
 | 
						|
		*((word32*)a[j]) = *((word32*)U1[a[j][0]])
 | 
						|
								^ *((word32*)U2[a[j][1]])
 | 
						|
								^ *((word32*)U3[a[j][2]])
 | 
						|
								^ *((word32*)U4[a[j][3]]);
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
int rijndaelKeySched (word8 k[MAXKC][4], int keyBits __UNUS, word8 W[MAXROUNDS+1][4][4])
 | 
						|
{
 | 
						|
 | 
						|
	(void) keyBits;
 | 
						|
	
 | 
						|
	// Calculate the necessary round keys
 | 
						|
	// The number of calculations depends on keyBits and blockBits
 | 
						|
	 
 | 
						|
	int j, r, t, rconpointer = 0;
 | 
						|
	word8 tk[MAXKC][4];
 | 
						|
	int KC = ROUNDS - 6;
 | 
						|
 | 
						|
	for(j = KC-1; j >= 0; j--)
 | 
						|
		*((word32*)tk[j]) = *((word32*)k[j]);
 | 
						|
	r = 0;
 | 
						|
	t = 0;
 | 
						|
	// copy values into round key array
 | 
						|
	for(j = 0; (j < KC) && (r < (ROUNDS+1)); ) {
 | 
						|
		for (; (j < KC) && (t < 4); j++, t++)
 | 
						|
			*((word32*)W[r][t]) = *((word32*)tk[j]);
 | 
						|
		if (t == 4) {
 | 
						|
			r++;
 | 
						|
			t = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
		
 | 
						|
	while (r < (ROUNDS+1)) { // while not enough round key material calculated
 | 
						|
		// calculate new values
 | 
						|
		tk[0][0] ^= S[tk[KC-1][1]];
 | 
						|
		tk[0][1] ^= S[tk[KC-1][2]];
 | 
						|
		tk[0][2] ^= S[tk[KC-1][3]];
 | 
						|
		tk[0][3] ^= S[tk[KC-1][0]];
 | 
						|
		tk[0][0] ^= rcon[rconpointer++];
 | 
						|
 | 
						|
		if (KC != 8)
 | 
						|
			for(j = 1; j < KC; j++)
 | 
						|
				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
 | 
						|
		else {
 | 
						|
			for(j = 1; j < KC/2; j++)
 | 
						|
				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
 | 
						|
			tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
 | 
						|
			tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
 | 
						|
			tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
 | 
						|
			tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
 | 
						|
			for(j = KC/2 + 1; j < KC; j++)
 | 
						|
				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
 | 
						|
		}
 | 
						|
		// copy values into round key array
 | 
						|
		for(j = 0; (j < KC) && (r < (ROUNDS+1)); ) {
 | 
						|
			for (; (j < KC) && (t < 4); j++, t++)
 | 
						|
				*((word32*)W[r][t]) = *((word32*)tk[j]);
 | 
						|
			if (t == 4) {
 | 
						|
				r++;
 | 
						|
				t = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}		
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int rijndaelKeyEnctoDec (int keyBits __UNUS, word8 W[MAXROUNDS+1][4][4])
 | 
						|
{
 | 
						|
	(void) keyBits;
 | 
						|
 | 
						|
	int r;
 | 
						|
 | 
						|
	for (r = 1; r < ROUNDS; r++) {
 | 
						|
		InvMixColumn(W[r], 4);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}	
 | 
						|
 | 
						|
int rijndaelEncrypt (word8 a[16], word8 b[16], word8 rk[MAXROUNDS+1][4][4])
 | 
						|
{
 | 
						|
	// Encryption of one block. 
 | 
						|
	
 | 
						|
	int r;
 | 
						|
   word8 temp[4][4];
 | 
						|
 | 
						|
    *((word32*)temp[0]) = *((word32*)a) ^ *((word32*)rk[0][0]);
 | 
						|
    *((word32*)temp[1]) = *((word32*)(a+4)) ^ *((word32*)rk[0][1]);
 | 
						|
    *((word32*)temp[2]) = *((word32*)(a+8)) ^ *((word32*)rk[0][2]);
 | 
						|
    *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
 | 
						|
    *((word32*)b) = *((word32*)T1[temp[0][0]])
 | 
						|
           ^ *((word32*)T2[temp[1][1]])
 | 
						|
           ^ *((word32*)T3[temp[2][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[3][3]]);
 | 
						|
    *((word32*)(b+4)) = *((word32*)T1[temp[1][0]])
 | 
						|
           ^ *((word32*)T2[temp[2][1]])
 | 
						|
           ^ *((word32*)T3[temp[3][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[0][3]]);
 | 
						|
    *((word32*)(b+8)) = *((word32*)T1[temp[2][0]])
 | 
						|
           ^ *((word32*)T2[temp[3][1]])
 | 
						|
           ^ *((word32*)T3[temp[0][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[1][3]]);
 | 
						|
    *((word32*)(b+12)) = *((word32*)T1[temp[3][0]])
 | 
						|
           ^ *((word32*)T2[temp[0][1]])
 | 
						|
           ^ *((word32*)T3[temp[1][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[2][3]]);
 | 
						|
   for(r = 1; r < ROUNDS-1; r++) {
 | 
						|
		*((word32*)temp[0]) = *((word32*)b) ^ *((word32*)rk[r][0]);
 | 
						|
		*((word32*)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[r][1]);
 | 
						|
		*((word32*)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[r][2]);
 | 
						|
		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
 | 
						|
   *((word32*)b) = *((word32*)T1[temp[0][0]])
 | 
						|
           ^ *((word32*)T2[temp[1][1]])
 | 
						|
           ^ *((word32*)T3[temp[2][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[3][3]]);
 | 
						|
   *((word32*)(b+4)) = *((word32*)T1[temp[1][0]])
 | 
						|
           ^ *((word32*)T2[temp[2][1]])
 | 
						|
           ^ *((word32*)T3[temp[3][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[0][3]]);
 | 
						|
   *((word32*)(b+8)) = *((word32*)T1[temp[2][0]])
 | 
						|
           ^ *((word32*)T2[temp[3][1]])
 | 
						|
           ^ *((word32*)T3[temp[0][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[1][3]]);
 | 
						|
   *((word32*)(b+12)) = *((word32*)T1[temp[3][0]])
 | 
						|
           ^ *((word32*)T2[temp[0][1]])
 | 
						|
           ^ *((word32*)T3[temp[1][2]]) 
 | 
						|
           ^ *((word32*)T4[temp[2][3]]);
 | 
						|
   }
 | 
						|
   // last round is special   
 | 
						|
	*((word32*)temp[0]) = *((word32*)b) ^ *((word32*)rk[ROUNDS-1][0]);
 | 
						|
	*((word32*)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[ROUNDS-1][1]);
 | 
						|
	*((word32*)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[ROUNDS-1][2]);
 | 
						|
	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
 | 
						|
   b[0] = T1[temp[0][0]][1];
 | 
						|
   b[1] = T1[temp[1][1]][1];
 | 
						|
   b[2] = T1[temp[2][2]][1]; 
 | 
						|
   b[3] = T1[temp[3][3]][1];
 | 
						|
   b[4] = T1[temp[1][0]][1];
 | 
						|
   b[5] = T1[temp[2][1]][1];
 | 
						|
   b[6] = T1[temp[3][2]][1]; 
 | 
						|
   b[7] = T1[temp[0][3]][1];
 | 
						|
   b[8] = T1[temp[2][0]][1];
 | 
						|
   b[9] = T1[temp[3][1]][1];
 | 
						|
   b[10] = T1[temp[0][2]][1]; 
 | 
						|
   b[11] = T1[temp[1][3]][1];
 | 
						|
   b[12] = T1[temp[3][0]][1];
 | 
						|
   b[13] = T1[temp[0][1]][1];
 | 
						|
   b[14] = T1[temp[1][2]][1]; 
 | 
						|
   b[15] = T1[temp[2][3]][1];
 | 
						|
	*((word32*)b) ^= *((word32*)rk[ROUNDS][0]);
 | 
						|
	*((word32*)(b+4)) ^= *((word32*)rk[ROUNDS][1]);
 | 
						|
	*((word32*)(b+8)) ^= *((word32*)rk[ROUNDS][2]);
 | 
						|
	*((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int rijndaelEncryptRound (word8 a[4][4], 
 | 
						|
		word8 rk[MAXROUNDS+1][4][4], int rounds)
 | 
						|
// Encrypt only a certain number of rounds.
 | 
						|
// Only used in the Intermediate Value Known Answer Test.
 | 
						|
 | 
						|
{
 | 
						|
	int r;
 | 
						|
   word8 temp[4][4];
 | 
						|
 | 
						|
 | 
						|
	// make number of rounds sane
 | 
						|
	if (rounds > ROUNDS) rounds = ROUNDS;
 | 
						|
 | 
						|
	*((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
 | 
						|
	*((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
 | 
						|
	*((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
 | 
						|
	*((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
 | 
						|
 | 
						|
	for(r = 1; (r <= rounds) && (r < ROUNDS); r++) {
 | 
						|
		*((word32*)temp[0]) = *((word32*)T1[a[0][0]])
 | 
						|
           ^ *((word32*)T2[a[1][1]])
 | 
						|
           ^ *((word32*)T3[a[2][2]]) 
 | 
						|
           ^ *((word32*)T4[a[3][3]]);
 | 
						|
		*((word32*)temp[1]) = *((word32*)T1[a[1][0]])
 | 
						|
           ^ *((word32*)T2[a[2][1]])
 | 
						|
           ^ *((word32*)T3[a[3][2]]) 
 | 
						|
           ^ *((word32*)T4[a[0][3]]);
 | 
						|
		*((word32*)temp[2]) = *((word32*)T1[a[2][0]])
 | 
						|
           ^ *((word32*)T2[a[3][1]])
 | 
						|
           ^ *((word32*)T3[a[0][2]]) 
 | 
						|
           ^ *((word32*)T4[a[1][3]]);
 | 
						|
		*((word32*)temp[3]) = *((word32*)T1[a[3][0]])
 | 
						|
           ^ *((word32*)T2[a[0][1]])
 | 
						|
           ^ *((word32*)T3[a[1][2]]) 
 | 
						|
           ^ *((word32*)T4[a[2][3]]);
 | 
						|
		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
 | 
						|
		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
 | 
						|
		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
 | 
						|
		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
 | 
						|
   }
 | 
						|
	if (rounds == ROUNDS) {
 | 
						|
   	// last round is special   
 | 
						|
   	temp[0][0] = T1[a[0][0]][1];
 | 
						|
   	temp[0][1] = T1[a[1][1]][1];
 | 
						|
   	temp[0][2] = T1[a[2][2]][1]; 
 | 
						|
   	temp[0][3] = T1[a[3][3]][1];
 | 
						|
   	temp[1][0] = T1[a[1][0]][1];
 | 
						|
   	temp[1][1] = T1[a[2][1]][1];
 | 
						|
   	temp[1][2] = T1[a[3][2]][1]; 
 | 
						|
   	temp[1][3] = T1[a[0][3]][1];
 | 
						|
   	temp[2][0] = T1[a[2][0]][1];
 | 
						|
   	temp[2][1] = T1[a[3][1]][1];
 | 
						|
   	temp[2][2] = T1[a[0][2]][1]; 
 | 
						|
   	temp[2][3] = T1[a[1][3]][1];
 | 
						|
   	temp[3][0] = T1[a[3][0]][1];
 | 
						|
   	temp[3][1] = T1[a[0][1]][1];
 | 
						|
   	temp[3][2] = T1[a[1][2]][1]; 
 | 
						|
   	temp[3][3] = T1[a[2][3]][1];
 | 
						|
		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
 | 
						|
		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
 | 
						|
		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
 | 
						|
		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}   
 | 
						|
 | 
						|
 | 
						|
int rijndaelDecrypt (word8 a[16], word8 b[16], word8 rk[MAXROUNDS+1][4][4])
 | 
						|
{
 | 
						|
	int r;
 | 
						|
   word8 temp[4][4];
 | 
						|
	
 | 
						|
 | 
						|
    *((word32*)temp[0]) = *((word32*)a) ^ *((word32*)rk[ROUNDS][0]);
 | 
						|
    *((word32*)temp[1]) = *((word32*)(a+4)) ^ *((word32*)rk[ROUNDS][1]);
 | 
						|
    *((word32*)temp[2]) = *((word32*)(a+8)) ^ *((word32*)rk[ROUNDS][2]);
 | 
						|
    *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
 | 
						|
    *((word32*)b) = *((word32*)T5[temp[0][0]])
 | 
						|
           ^ *((word32*)T6[temp[3][1]])
 | 
						|
           ^ *((word32*)T7[temp[2][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[1][3]]);
 | 
						|
   *((word32*)(b+4)) = *((word32*)T5[temp[1][0]])
 | 
						|
           ^ *((word32*)T6[temp[0][1]])
 | 
						|
           ^ *((word32*)T7[temp[3][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[2][3]]);
 | 
						|
   *((word32*)(b+8)) = *((word32*)T5[temp[2][0]])
 | 
						|
           ^ *((word32*)T6[temp[1][1]])
 | 
						|
           ^ *((word32*)T7[temp[0][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[3][3]]);
 | 
						|
   *((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
 | 
						|
           ^ *((word32*)T6[temp[2][1]])
 | 
						|
           ^ *((word32*)T7[temp[1][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[0][3]]);
 | 
						|
   for(r = ROUNDS-1; r > 1; r--) {
 | 
						|
		*((word32*)temp[0]) = *((word32*)b) ^ *((word32*)rk[r][0]);
 | 
						|
		*((word32*)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[r][1]);
 | 
						|
		*((word32*)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[r][2]);
 | 
						|
		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
 | 
						|
		*((word32*)b) = *((word32*)T5[temp[0][0]])
 | 
						|
           ^ *((word32*)T6[temp[3][1]])
 | 
						|
           ^ *((word32*)T7[temp[2][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[1][3]]);
 | 
						|
		*((word32*)(b+4)) = *((word32*)T5[temp[1][0]])
 | 
						|
           ^ *((word32*)T6[temp[0][1]])
 | 
						|
           ^ *((word32*)T7[temp[3][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[2][3]]);
 | 
						|
		*((word32*)(b+8)) = *((word32*)T5[temp[2][0]])
 | 
						|
           ^ *((word32*)T6[temp[1][1]])
 | 
						|
           ^ *((word32*)T7[temp[0][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[3][3]]);
 | 
						|
		*((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
 | 
						|
           ^ *((word32*)T6[temp[2][1]])
 | 
						|
           ^ *((word32*)T7[temp[1][2]]) 
 | 
						|
           ^ *((word32*)T8[temp[0][3]]);
 | 
						|
   }
 | 
						|
   // last round is special   
 | 
						|
	*((word32*)temp[0]) = *((word32*)b) ^ *((word32*)rk[1][0]);
 | 
						|
	*((word32*)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[1][1]);
 | 
						|
	*((word32*)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[1][2]);
 | 
						|
	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
 | 
						|
   b[0] = S5[temp[0][0]];
 | 
						|
   b[1] = S5[temp[3][1]];
 | 
						|
   b[2] = S5[temp[2][2]]; 
 | 
						|
   b[3] = S5[temp[1][3]];
 | 
						|
   b[4] = S5[temp[1][0]];
 | 
						|
   b[5] = S5[temp[0][1]];
 | 
						|
   b[6] = S5[temp[3][2]]; 
 | 
						|
   b[7] = S5[temp[2][3]];
 | 
						|
   b[8] = S5[temp[2][0]];
 | 
						|
   b[9] = S5[temp[1][1]];
 | 
						|
   b[10] = S5[temp[0][2]]; 
 | 
						|
   b[11] = S5[temp[3][3]];
 | 
						|
   b[12] = S5[temp[3][0]];
 | 
						|
   b[13] = S5[temp[2][1]];
 | 
						|
   b[14] = S5[temp[1][2]]; 
 | 
						|
   b[15] = S5[temp[0][3]];
 | 
						|
	*((word32*)b) ^= *((word32*)rk[0][0]);
 | 
						|
	*((word32*)(b+4)) ^= *((word32*)rk[0][1]);
 | 
						|
	*((word32*)(b+8)) ^= *((word32*)rk[0][2]);
 | 
						|
	*((word32*)(b+12)) ^= *((word32*)rk[0][3]);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int rijndaelDecryptRound (word8 a[4][4],  
 | 
						|
	word8 rk[MAXROUNDS+1][4][4], int rounds)
 | 
						|
// Decrypt only a certain number of rounds.
 | 
						|
// Only used in the Intermediate Value Known Answer Test.
 | 
						|
// Operations rearranged such that the intermediate values
 | 
						|
// of decryption correspond with the intermediate values
 | 
						|
// of encryption.
 | 
						|
 | 
						|
{
 | 
						|
	int r;
 | 
						|
	
 | 
						|
 | 
						|
	// make number of rounds sane
 | 
						|
	if (rounds > ROUNDS) rounds = ROUNDS;
 | 
						|
 | 
						|
        // First the special round:
 | 
						|
	//   without InvMixColumn
 | 
						|
	//   with extra KeyAddition
 | 
						|
	
 | 
						|
	KeyAddition(a,rk[ROUNDS],4);
 | 
						|
	Substitution(a,Si,4);
 | 
						|
	ShiftRow(a,1,4);              
 | 
						|
	
 | 
						|
	// ROUNDS-1 ordinary rounds
 | 
						|
	
 | 
						|
	for(r = ROUNDS-1; r > rounds; r--) {
 | 
						|
		KeyAddition(a,rk[r],4);
 | 
						|
		InvMixColumn(a,4);      
 | 
						|
		Substitution(a,Si,4);
 | 
						|
		ShiftRow(a,1,4);                
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (rounds == 0) {
 | 
						|
		// End with the extra key addition
 | 
						|
			
 | 
						|
		KeyAddition(a,rk[0],4);
 | 
						|
	}    
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*** End Rijndael algorithm,  Begin the AES Interface ***/
 | 
						|
 | 
						|
 | 
						|
int makeKey(keyInstance *key, BYTE direction, int keyByteLen, char *keyMaterial)
 | 
						|
{
 | 
						|
	word8 k[MAXKC][4];
 | 
						|
	int i;
 | 
						|
	int keyLen = keyByteLen*8;
 | 
						|
	
 | 
						|
	if (key == NULL) {
 | 
						|
		return BAD_KEY_INSTANCE;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
 | 
						|
		key->direction = direction;
 | 
						|
	} else {
 | 
						|
		return BAD_KEY_DIR;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { 
 | 
						|
		key->keyLen = keyLen;
 | 
						|
	} else {
 | 
						|
		return BAD_KEY_MAT;
 | 
						|
	}
 | 
						|
 | 
						|
	if ( keyMaterial ) {
 | 
						|
		strncpy(key->keyMaterial, keyMaterial, keyByteLen);
 | 
						|
	} else {
 | 
						|
		return BAD_KEY_MAT;
 | 
						|
	}
 | 
						|
 | 
						|
	ROUNDS = keyLen/32 + 6;
 | 
						|
 | 
						|
	// initialize key schedule:
 | 
						|
	for(i = 0; i < key->keyLen/8; i++) {
 | 
						|
		k[i / 4][i % 4] = (word8) key->keyMaterial[i]; 
 | 
						|
	}
 | 
						|
	rijndaelKeySched (k, key->keyLen, key->keySched);
 | 
						|
	if (direction == DIR_DECRYPT)
 | 
						|
		rijndaelKeyEnctoDec (key->keyLen, key->keySched);
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
int cipherInit(cipherInstance *cipher, BYTE mode, char *IV)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
 | 
						|
		cipher->mode = mode;
 | 
						|
	} else {
 | 
						|
		return BAD_CIPHER_MODE;
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	if (IV != NULL) {
 | 
						|
 		for(i = 0; i < 16; i++) cipher->IV[i] = IV[i];
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		// KevinJ - Added this to just generate a random initialization vector
 | 
						|
		for(i = 0; i < 16; i++)
 | 
						|
			cipher->IV[i]=(BYTE)randomMT();
 | 
						|
	}
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int blockEncrypt(cipherInstance *cipher,
 | 
						|
	keyInstance *key, BYTE *input, int inputByteLen, BYTE *outBuffer)
 | 
						|
{
 | 
						|
	int i, k, numBlocks;
 | 
						|
	word8 block[16], iv[4][4];
 | 
						|
	int inputLen = inputByteLen*8;
 | 
						|
 | 
						|
	if (cipher == NULL ||
 | 
						|
		key == NULL ||
 | 
						|
		key->direction == DIR_DECRYPT) {
 | 
						|
		return BAD_CIPHER_STATE;
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	numBlocks = inputLen/128;
 | 
						|
	
 | 
						|
	switch (cipher->mode) {
 | 
						|
	case MODE_ECB: 
 | 
						|
		for (i = numBlocks; i > 0; i--) {
 | 
						|
			
 | 
						|
			rijndaelEncrypt (input, outBuffer, key->keySched);
 | 
						|
			
 | 
						|
			input += 16;
 | 
						|
			outBuffer += 16;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
		
 | 
						|
	case MODE_CBC:
 | 
						|
#if STRICT_ALIGN 
 | 
						|
		memcpy(block,cipher->IV,16); 
 | 
						|
#else
 | 
						|
		*((word32*)block) =  *((word32*)(cipher->IV));
 | 
						|
		*((word32*)(block+4)) =  *((word32*)(cipher->IV+4));
 | 
						|
		*((word32*)(block+8)) =  *((word32*)(cipher->IV+8));
 | 
						|
		*((word32*)(block+12)) =  *((word32*)(cipher->IV+12));
 | 
						|
#endif
 | 
						|
		
 | 
						|
		for (i = numBlocks; i > 0; i--) {
 | 
						|
			*((word32*)block) ^= *((word32*)(input));
 | 
						|
			*((word32*)(block+4)) ^= *((word32*)(input+4));
 | 
						|
			*((word32*)(block+8)) ^= *((word32*)(input+8));
 | 
						|
			*((word32*)(block+12)) ^= *((word32*)(input+12));
 | 
						|
 | 
						|
			rijndaelEncrypt (block, outBuffer, key->keySched);
 | 
						|
			
 | 
						|
			input += 16;
 | 
						|
			outBuffer += 16;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	
 | 
						|
	case MODE_CFB1:
 | 
						|
#if STRICT_ALIGN 
 | 
						|
		memcpy(iv,cipher->IV,16); 
 | 
						|
#else
 | 
						|
		*((word32*)iv[0]) = *((word32*)(cipher->IV));
 | 
						|
		*((word32*)iv[1]) = *((word32*)(cipher->IV+4));
 | 
						|
		*((word32*)iv[2]) = *((word32*)(cipher->IV+8));
 | 
						|
		*((word32*)iv[3]) = *((word32*)(cipher->IV+12));
 | 
						|
#endif
 | 
						|
		for (i = numBlocks; i > 0; i--) {
 | 
						|
			for (k = 0; k < 128; k++) {
 | 
						|
				*((word32*)block) = *((word32*)iv[0]);
 | 
						|
				*((word32*)(block+4)) = *((word32*)iv[1]);
 | 
						|
				*((word32*)(block+8)) = *((word32*)iv[2]);
 | 
						|
				*((word32*)(block+12)) = *((word32*)iv[3]);
 | 
						|
 | 
						|
				rijndaelEncrypt (block, block, key->keySched);
 | 
						|
				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
 | 
						|
				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
 | 
						|
				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
 | 
						|
				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
 | 
						|
				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
 | 
						|
				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
 | 
						|
				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
 | 
						|
				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
 | 
						|
				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
 | 
						|
				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
 | 
						|
				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
 | 
						|
				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
 | 
						|
				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
 | 
						|
				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
 | 
						|
				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
 | 
						|
				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
 | 
						|
				iv[3][3] = (word8)((iv[3][3] << 1) | (outBuffer[k/8] >> (7-(k&7))) & 1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	
 | 
						|
	default:
 | 
						|
		return BAD_CIPHER_STATE;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return numBlocks*128;
 | 
						|
}
 | 
						|
 | 
						|
int blockDecrypt(cipherInstance *cipher,
 | 
						|
	keyInstance *key, BYTE *input, int inputByteLen, BYTE *outBuffer)
 | 
						|
{
 | 
						|
	int i, k, numBlocks;
 | 
						|
	word8 block[16], iv[4][4];
 | 
						|
	int inputLen = inputByteLen*8;
 | 
						|
 | 
						|
	if (cipher == NULL ||
 | 
						|
		key == NULL ||
 | 
						|
		cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT) {
 | 
						|
		return BAD_CIPHER_STATE;
 | 
						|
	}
 | 
						|
	
 | 
						|
 | 
						|
	numBlocks = inputLen/128;
 | 
						|
	
 | 
						|
	switch (cipher->mode) {
 | 
						|
	case MODE_ECB: 
 | 
						|
		for (i = numBlocks; i > 0; i--) { 
 | 
						|
 | 
						|
			rijndaelDecrypt (input, outBuffer, key->keySched);
 | 
						|
 | 
						|
			input += 16;
 | 
						|
			outBuffer += 16;
 | 
						|
 | 
						|
		}
 | 
						|
		break;
 | 
						|
		
 | 
						|
	case MODE_CBC:
 | 
						|
		// first block 
 | 
						|
 | 
						|
		rijndaelDecrypt (input, block, key->keySched);
 | 
						|
#if STRICT_ALIGN
 | 
						|
		memcpy(outBuffer,cipher->IV,16); 
 | 
						|
  		*((word32*)(outBuffer)) ^= *((word32*)block);
 | 
						|
  		*((word32*)(outBuffer+4)) ^= *((word32*)(block+4));
 | 
						|
  		*((word32*)(outBuffer+8)) ^= *((word32*)(block+8));
 | 
						|
  		*((word32*)(outBuffer+12)) ^= *((word32*)(block+12));
 | 
						|
#else
 | 
						|
  		*((word32*)(outBuffer)) = *((word32*)block) ^ *((word32*)(cipher->IV));
 | 
						|
  		*((word32*)(outBuffer+4)) = *((word32*)(block+4)) ^ *((word32*)(cipher->IV+4));
 | 
						|
  		*((word32*)(outBuffer+8)) = *((word32*)(block+8)) ^ *((word32*)(cipher->IV+8));
 | 
						|
  		*((word32*)(outBuffer+12)) = *((word32*)(block+12)) ^ *((word32*)(cipher->IV+12));
 | 
						|
#endif
 | 
						|
		
 | 
						|
		// next blocks
 | 
						|
		for (i = numBlocks-1; i > 0; i--) { 
 | 
						|
		
 | 
						|
			rijndaelDecrypt (input, block, key->keySched);
 | 
						|
			
 | 
						|
			*((word32*)(outBuffer+16)) = *((word32*)block) ^
 | 
						|
					*((word32*)(input-16));
 | 
						|
			*((word32*)(outBuffer+20)) = *((word32*)(block+4)) ^
 | 
						|
					*((word32*)(input-12));
 | 
						|
			*((word32*)(outBuffer+24)) = *((word32*)(block+8)) ^
 | 
						|
					*((word32*)(input-8));
 | 
						|
			*((word32*)(outBuffer+28)) = *((word32*)(block+12)) ^
 | 
						|
					*((word32*)(input-4));
 | 
						|
			
 | 
						|
			input += 16;
 | 
						|
			outBuffer += 16;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	
 | 
						|
	case MODE_CFB1:
 | 
						|
#if STRICT_ALIGN 
 | 
						|
		memcpy(iv,cipher->IV,16); 
 | 
						|
#else
 | 
						|
		*((word32*)iv[0]) = *((word32*)(cipher->IV));
 | 
						|
		*((word32*)iv[1]) = *((word32*)(cipher->IV+4));
 | 
						|
		*((word32*)iv[2]) = *((word32*)(cipher->IV+8));
 | 
						|
		*((word32*)iv[3]) = *((word32*)(cipher->IV+12));
 | 
						|
#endif
 | 
						|
		for (i = numBlocks; i > 0; i--) {
 | 
						|
			for (k = 0; k < 128; k++) {
 | 
						|
				*((word32*)block) = *((word32*)iv[0]);
 | 
						|
				*((word32*)(block+4)) = *((word32*)iv[1]);
 | 
						|
				*((word32*)(block+8)) = *((word32*)iv[2]);
 | 
						|
				*((word32*)(block+12)) = *((word32*)iv[3]);
 | 
						|
 | 
						|
				rijndaelEncrypt (block, block, key->keySched);
 | 
						|
				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
 | 
						|
				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
 | 
						|
				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
 | 
						|
				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
 | 
						|
				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
 | 
						|
				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
 | 
						|
				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
 | 
						|
				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
 | 
						|
				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
 | 
						|
				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
 | 
						|
				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
 | 
						|
				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
 | 
						|
				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
 | 
						|
				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
 | 
						|
				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
 | 
						|
				iv[3][3] = (word8)((iv[3][3] << 1) | (input[k/8] >> (7-(k&7))) & 1);
 | 
						|
				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		return BAD_CIPHER_STATE;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return numBlocks*128;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 *	cipherUpdateRounds:
 | 
						|
 *
 | 
						|
 *	Encrypts/Decrypts exactly one full block a specified number of rounds.
 | 
						|
 *	Only used in the Intermediate Value Known Answer Test.	
 | 
						|
 *
 | 
						|
 *	Returns:
 | 
						|
 *		TRUE - on success
 | 
						|
 *		BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized)
 | 
						|
 */
 | 
						|
 | 
						|
int cipherUpdateRounds(cipherInstance *cipher,
 | 
						|
	keyInstance *key, BYTE *input, int inputLen __UNUS, BYTE *outBuffer, int rounds)
 | 
						|
{
 | 
						|
	(void) inputLen;
 | 
						|
 | 
						|
	int j;
 | 
						|
	word8 block[4][4];
 | 
						|
 | 
						|
	if (cipher == NULL ||
 | 
						|
		key == NULL) {
 | 
						|
		return BAD_CIPHER_STATE;
 | 
						|
	}
 | 
						|
 | 
						|
	for (j = 3; j >= 0; j--) {
 | 
						|
		// parse input stream into rectangular array
 | 
						|
  		*((word32*)block[j]) = *((word32*)(input+4*j));
 | 
						|
	}
 | 
						|
 | 
						|
	switch (key->direction) {
 | 
						|
	case DIR_ENCRYPT:
 | 
						|
		rijndaelEncryptRound (block, key->keySched, rounds);
 | 
						|
	break;
 | 
						|
		
 | 
						|
	case DIR_DECRYPT:
 | 
						|
		rijndaelDecryptRound (block, key->keySched, rounds);
 | 
						|
	break;
 | 
						|
		
 | 
						|
	default: return BAD_KEY_DIR;
 | 
						|
	} 
 | 
						|
 | 
						|
	for (j = 3; j >= 0; j--) {
 | 
						|
		// parse rectangular array into output ciphertext bytes
 | 
						|
		*((word32*)(outBuffer+4*j)) = *((word32*)block[j]);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return TRUE;
 | 
						|
}
 |