mirror of
				https://github.com/DarkflameUniverse/DarkflameServer.git
				synced 2025-10-31 12:41:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1259 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1259 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///
 | |
| /// \brief \b [Internal] SHA-1 computation class
 | |
| ///
 | |
| /// Performant RSA en/decryption with 256-bit to 16384-bit modulus
 | |
| ///
 | |
| /// catid(cat02e@fsu.edu)
 | |
| ///
 | |
| /// 7/30/2004 Fixed VS6 compat
 | |
| /// 7/26/2004 Now internally generates private keys
 | |
| /// simpleModExp() is faster for encryption than MontyModExp
 | |
| /// CRT-MontyModExp is faster for decryption than CRT-SimpleModExp
 | |
| /// 7/25/2004 Implemented Montgomery modular exponentation
 | |
| /// Implemented CRT modular exponentation optimization
 | |
| /// 7/21/2004 Did some pre-lim coding
 | |
| ///
 | |
| /// Best performance on my 1.8 GHz P4 (mobile):
 | |
| /// 1024-bit generate key : 30 seconds
 | |
| /// 1024-bit set private key : 100 ms (pre-compute this step)
 | |
| /// 1024-bit encryption : 200 usec
 | |
| /// 1024-bit decryption : 400 ms
 | |
| ///
 | |
| /// \todo There's a bug in MonModExp() that restricts us to k-1 bits
 | |
| ///
 | |
| /// Tabs: 4 spaces
 | |
| /// Dist: public
 | |
| 
 | |
| #ifndef RSACRYPT_H
 | |
| #define RSACRYPT_H
 | |
| 
 | |
| #if !defined(_XBOX360) && !defined(_WIN32_WCE)
 | |
| 
 | |
| #define RSASUPPORTGENPRIME
 | |
| #include "Export.h"
 | |
| /// Can't go under 256 or you'll need to disable the USEASSEMBLY macro in bigtypes.h
 | |
| /// That's because the assembly assumes at least 128-bit data to work on
 | |
| /// #define RSA_BIT_SIZE big::u512
 | |
| #define RSA_BIT_SIZE big::u256
 | |
| 
 | |
| #include "RakMemoryOverride.h"
 | |
| #include "BigTypes.h"
 | |
| #include "Rand.h" //Giblet - added missing include for randomMT()
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( push )
 | |
| #endif
 | |
| 
 | |
| namespace big
 | |
| {
 | |
| 
 | |
| 	using namespace cat;
 | |
| 
 | |
| 	// r = x^y Mod n (fast for small y)
 | |
| 	BIGONETYPE void simpleModExp( T &x0, T &y0, T &n0, T &r0 )
 | |
| 	{
 | |
| 		BIGDOUBLESIZE( T, x );
 | |
| 		BIGDOUBLESIZE( T, y );
 | |
| 		BIGDOUBLESIZE( T, n );
 | |
| 		BIGDOUBLESIZE( T, r );
 | |
| 
 | |
| 		usetlow( x, x0 );
 | |
| 		usetlow( y, y0 );
 | |
| 		usetlow( n, n0 );
 | |
| 		usetw( r, 1 );
 | |
| 
 | |
| 		umodulo( x, n, x );
 | |
| 
 | |
| 		u32 squares = 0;
 | |
| 
 | |
| 		for ( u32 ii = 0; ii < BIGWORDCOUNT( T ); ++ii )
 | |
| 		{
 | |
| 			word y_i = y[ ii ];
 | |
| 
 | |
| 			u32 ctr = WORDBITS;
 | |
| 
 | |
| 			while ( y_i )
 | |
| 			{
 | |
| 				if ( y_i & 1 )
 | |
| 				{
 | |
| 					if ( squares )
 | |
| 						do
 | |
| 						{
 | |
| 							usquare( x );
 | |
| 							umodulo( x, n, x );
 | |
| 						}
 | |
| 
 | |
| 						while ( --squares );
 | |
| 
 | |
| 						umultiply( r, x, r );
 | |
| 
 | |
| 						umodulo( r, n, r );
 | |
| 				}
 | |
| 
 | |
| 				y_i >>= 1;
 | |
| 				++squares;
 | |
| 				--ctr;
 | |
| 			}
 | |
| 
 | |
| 			squares += ctr;
 | |
| 		}
 | |
| 
 | |
| 		takelow( r0, r );
 | |
| 	}
 | |
| 
 | |
| 	// computes Rn = 2^k (mod n), n < 2^k
 | |
| 	BIGONETYPE void rModn( T &n, T &Rn )
 | |
| 	{
 | |
| 		BIGDOUBLESIZE( T, dR );
 | |
| 		BIGDOUBLESIZE( T, dn );
 | |
| 		BIGDOUBLESIZE( T, dRn );
 | |
| 		T one;
 | |
| 
 | |
| 		// dR = 2^k
 | |
| 		usetw( one, 1 );
 | |
| 		sethigh( dR, one );
 | |
| 
 | |
| 		// Rn = 2^k (mod n)
 | |
| 		usetlow( dn, n );
 | |
| 		umodulo( dR, dn, dRn );
 | |
| 		takelow( Rn, dRn );
 | |
| 	}
 | |
| 
 | |
| 	// computes c = GCD(a, b)
 | |
| 	BIGONETYPE void GCD( T &a0, T &b0, T &c )
 | |
| 	{
 | |
| 		T a;
 | |
| 
 | |
| 		umodulo( a0, b0, c );
 | |
| 
 | |
| 		if ( isZero( c ) )
 | |
| 		{
 | |
| 			set ( c, b0 )
 | |
| 
 | |
| 				;
 | |
| 			return ;
 | |
| 		}
 | |
| 
 | |
| 		umodulo( b0, c, a );
 | |
| 
 | |
| 		if ( isZero( a ) )
 | |
| 			return ;
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
 | |
| #endif
 | |
| 		while ( true )
 | |
| 		{
 | |
| 			umodulo( c, a, c );
 | |
| 
 | |
| 			if ( isZero( c ) )
 | |
| 			{
 | |
| 				set ( c, a )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			umodulo( a, c, a );
 | |
| 
 | |
| 			if ( isZero( a ) )
 | |
| 				return ;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// directly computes x = c - a * b (mod n) > 0, c < n
 | |
| 	BIGONETYPE void SubMulMod( T &a, T &b, T &c, T &n, T &x )
 | |
| 	{
 | |
| 		BIGDOUBLESIZE( T, da );
 | |
| 		BIGDOUBLESIZE( T, dn );
 | |
| 		T y;
 | |
| 
 | |
| 		// y = a b (mod n)
 | |
| 		usetlow( da, a );
 | |
| 		umultiply( da, b );
 | |
| 		usetlow( dn, n );
 | |
| 		umodulo( da, dn, da );
 | |
| 		takelow( y, da );
 | |
| 
 | |
| 		// x = (c - y) (mod n) > 0
 | |
| 
 | |
| 		set ( x, c )
 | |
| 
 | |
| 			;
 | |
| 		if ( ugreater( c, y ) )
 | |
| 		{
 | |
| 			subtract( x, y );
 | |
| 		}
 | |
| 
 | |
| 		else
 | |
| 		{
 | |
| 			subtract( x, y );
 | |
| 
 | |
| 			add ( x, n )
 | |
| 
 | |
| 				;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	directly compute a' s.t. a' a - b' b = 1
 | |
| 
 | |
| 	b = b0 = n0
 | |
| 	rp = a'
 | |
| 	a = 2^k
 | |
| 	a > b > 0
 | |
| 	GCD(a, b) = 1 (b odd)
 | |
| 
 | |
| 	Trying to keep everything positive
 | |
| 	*/
 | |
| 	BIGONETYPE void computeRinverse( T &n0, T &rp )
 | |
| 	{
 | |
| 		T x0, x1, x2, a, b, q;
 | |
| 
 | |
| 		//x[0] = 1
 | |
| 		usetw( x0, 1 );
 | |
| 
 | |
| 		// a = 2^k (mod b0)
 | |
| 		rModn( n0, a );
 | |
| 
 | |
| 		// {q, b} = b0 / a
 | |
| 		udivide( n0, a, q, b );
 | |
| 
 | |
| 		// if b = 0, return x[0]
 | |
| 
 | |
| 		if ( isZero( b ) )
 | |
| 		{
 | |
| 			set ( rp, x0 )
 | |
| 
 | |
| 				;
 | |
| 			return ;
 | |
| 		}
 | |
| 
 | |
| 		// x[1] = -q (mod b0) = b0 - q, q <= b0
 | |
| 		set ( x1, n0 )
 | |
| 
 | |
| 			;
 | |
| 		subtract( x1, q );
 | |
| 
 | |
| 		// {q, a} = a / b
 | |
| 		udivide( a, b, q, a );
 | |
| 
 | |
| 		// if a = 0, return x[1]
 | |
| 		if ( isZero( a ) )
 | |
| 		{
 | |
| 			set ( rp, x1 )
 | |
| 
 | |
| 				;
 | |
| 			return ;
 | |
| 		}
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
 | |
| #endif
 | |
| 		while ( true )
 | |
| 		{
 | |
| 			// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 			SubMulMod( q, x1, x0, n0, x2 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[2]
 | |
| 
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( rp, x2 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 			SubMulMod( q, x2, x1, n0, x0 );
 | |
| 
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[0]
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( rp, x0 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 			SubMulMod( q, x0, x2, n0, x1 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[1]
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( rp, x1 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 			SubMulMod( q, x1, x0, n0, x2 );
 | |
| 
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[2]
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( rp, x2 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 			SubMulMod( q, x2, x1, n0, x0 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[0]
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( rp, x0 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 			SubMulMod( q, x0, x2, n0, x1 );
 | |
| 
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[1]
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( rp, x1 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* BIGONETYPE void computeRinverse2(T &_n0, T &_rp)
 | |
| 	{
 | |
| 	//T x0, x1, x2, a, b, q;
 | |
| 	BIGDOUBLESIZE(T, x0);
 | |
| 	BIGDOUBLESIZE(T, x1);
 | |
| 	BIGDOUBLESIZE(T, x2);
 | |
| 	BIGDOUBLESIZE(T, a);
 | |
| 	BIGDOUBLESIZE(T, b);
 | |
| 	BIGDOUBLESIZE(T, q);
 | |
| 	BIGDOUBLESIZE(T, n0);
 | |
| 	BIGDOUBLESIZE(T, rp);
 | |
| 
 | |
| 	usetlow(n0, _n0);
 | |
| 	usetlow(rp, _rp);
 | |
| 
 | |
| 	std::string old;
 | |
| 	//x[0] = 1
 | |
| 	usetw(x0, 1);
 | |
| 
 | |
| 	T _a;
 | |
| 	// a = 2^k (mod b0)
 | |
| 	rModn(_n0, _a);
 | |
| 	RECORD("TEST") << "a=" << toString(a, false) << " = 2^k (mod " << toString(n0, false) << ")";
 | |
| 	usetlow(a, _a);
 | |
| 
 | |
| 	// {q, b} = b0 / a
 | |
| 	udivide(n0, a, q, b);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b, false) << "} = n0=" << toString(n0, false) << " / a=" << toString(a, false);
 | |
| 
 | |
| 	// if b = 0, return x[0]
 | |
| 	if (isZero(b))
 | |
| 	{
 | |
| 	RECORD("TEST") << "b == 0, Returning x[0]";
 | |
| 	set(rp, x0);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[1] = -q (mod b0)
 | |
| 	negate(q);
 | |
| 	smodulo(q, n0, x1);
 | |
| 	if (BIGHIGHBIT(x1))
 | |
| 	add(x1, n0); // q > 0
 | |
| 	RECORD("TEST") << "x1=" << toString(x1, false) << " = q=" << toString(q, false) << " (mod n0=" << toString(n0, false) << ")";
 | |
| 
 | |
| 	// {q, a} = a / b
 | |
| 	old = toString(a, false);
 | |
| 	udivide(a, b, q, a);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
 | |
| 
 | |
| 	// if a = 0, return x[1]
 | |
| 	if (isZero(a))
 | |
| 	{
 | |
| 	RECORD("TEST") << "a == 0, Returning x[1]";
 | |
| 	set(rp, x1);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	RECORD("TEST") << "Entering loop...";
 | |
| 	while (true)
 | |
| 	{
 | |
| 	// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 	SubMulMod(q, x1, x0, n0, x2);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, b} = b / a
 | |
| 	old = toString(b);
 | |
| 	udivide(b, a, q, b);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
 | |
| 
 | |
| 	// if b = 0, return x[2]
 | |
| 	if (isZero(b))
 | |
| 	{
 | |
| 	RECORD("TEST") << "b == 0, Returning x[2]";
 | |
| 	set(rp, x2);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 	SubMulMod(q, x2, x1, n0, x0);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, a} = a / b
 | |
| 	old = toString(a, false);
 | |
| 	udivide(a, b, q, a);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
 | |
| 
 | |
| 	// if a = 0, return x[0]
 | |
| 	if (isZero(a))
 | |
| 	{
 | |
| 	RECORD("TEST") << "a == 0, Returning x[0]";
 | |
| 	set(rp, x0);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 	SubMulMod(q, x0, x2, n0, x1);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, b} = b / a
 | |
| 	old = toString(b);
 | |
| 	udivide(b, a, q, b);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
 | |
| 
 | |
| 	// if b = 0, return x[1]
 | |
| 	if (isZero(b))
 | |
| 	{
 | |
| 	RECORD("TEST") << "b == 0, Returning x[1]";
 | |
| 	set(rp, x1);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 	SubMulMod(q, x1, x0, n0, x2);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, a} = a / b
 | |
| 	old = toString(a, false);
 | |
| 	udivide(a, b, q, a);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
 | |
| 
 | |
| 	// if a = 0, return x[2]
 | |
| 	if (isZero(a))
 | |
| 	{
 | |
| 	RECORD("TEST") << "a == 0, Returning x[2]";
 | |
| 	set(rp, x2);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 	SubMulMod(q, x2, x1, n0, x0);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, b} = b / a
 | |
| 	old = toString(b);
 | |
| 	udivide(b, a, q, b);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
 | |
| 
 | |
| 	// if b = 0, return x[0]
 | |
| 	if (isZero(b))
 | |
| 	{
 | |
| 	RECORD("TEST") << "b == 0, Returning x[0]";
 | |
| 	set(rp, x0);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 
 | |
| 	// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 	SubMulMod(q, x0, x2, n0, x1);
 | |
| 	RECORD("TEST") << "x[0] = " << toString(x0, false);
 | |
| 	RECORD("TEST") << "x[1] = " << toString(x1, false);
 | |
| 	RECORD("TEST") << "x[2] = " << toString(x2, false);
 | |
| 
 | |
| 	// {q, a} = a / b
 | |
| 	old = toString(a, false);
 | |
| 	udivide(a, b, q, a);
 | |
| 	RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
 | |
| 
 | |
| 	// if a = 0, return x[1]
 | |
| 	if (isZero(a))
 | |
| 	{
 | |
| 	RECORD("TEST") << "a == 0, Returning x[1]";
 | |
| 	set(rp, x1);
 | |
| 	takelow(_rp, rp);
 | |
| 	return;
 | |
| 	}
 | |
| 	}
 | |
| 	}
 | |
| 	*/
 | |
| 	// directly compute a^-1 s.t. a^-1 a (mod b) = 1, a < b, GCD(a, b)
 | |
| 	BIGONETYPE void computeModularInverse( T &a0, T &b0, T &ap )
 | |
| 	{
 | |
| 		T x0, x1, x2;
 | |
| 		T a, b, q;
 | |
| 
 | |
| 		// x[2] = 1
 | |
| 		usetw( x2, 1 );
 | |
| 
 | |
| 		// {q, b} = b0 / a0
 | |
| 		udivide( b0, a0, q, b );
 | |
| 
 | |
| 		// x[0] = -q (mod b0) = b0 - q, q <= b0
 | |
| 
 | |
| 		set ( x0, b0 )
 | |
| 
 | |
| 			;
 | |
| 		subtract( x0, q );
 | |
| 
 | |
| 		set ( a, a0 )
 | |
| 
 | |
| 			;
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
 | |
| #endif
 | |
| 		while ( true )
 | |
| 		{
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[0]
 | |
| 
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( ap, x0 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 			SubMulMod( x0, q, x2, b0, x1 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[1]
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( ap, x1 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 			SubMulMod( x1, q, x0, b0, x2 );
 | |
| 
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[2]
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( ap, x2 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 			SubMulMod( x2, q, x1, b0, x0 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[0]
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( ap, x0 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[1] = x[2] - x[0] * q (mod b0)
 | |
| 			SubMulMod( x0, q, x2, b0, x1 );
 | |
| 
 | |
| 			// {q, a} = a / b
 | |
| 			udivide( a, b, q, a );
 | |
| 
 | |
| 			// if a = 0, return x[1]
 | |
| 			if ( isZero( a ) )
 | |
| 			{
 | |
| 				set ( ap, x1 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[2] = x[0] - x[1] * q (mod b0)
 | |
| 			SubMulMod( x1, q, x0, b0, x2 );
 | |
| 
 | |
| 			// {q, b} = b / a
 | |
| 			udivide( b, a, q, b );
 | |
| 
 | |
| 			// if b = 0, return x[2]
 | |
| 			if ( isZero( b ) )
 | |
| 			{
 | |
| 				set ( ap, x2 )
 | |
| 
 | |
| 					;
 | |
| 				return ;
 | |
| 			}
 | |
| 
 | |
| 			// x[0] = x[1] - x[2] * q (mod b0)
 | |
| 			SubMulMod( x2, q, x1, b0, x0 );
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// indirectly computes  n' s.t. 1 = r' r - n' n = GCD(r, n)
 | |
| 	BIGONETYPE void computeNRinverse( T &n0, T &np )
 | |
| 	{
 | |
| 		BIGDOUBLESIZE( T, r );
 | |
| 		BIGDOUBLESIZE( T, n );
 | |
| 
 | |
| 		// r' = (1 + n' n) / r
 | |
| 		computeRinverse( n0, np );
 | |
| 
 | |
| 		// n' = (r' r - 1) / n
 | |
| 		sethigh( r, np ); // special case of r = 2^k
 | |
| 		decrement( r );
 | |
| 		usetlow( n, n0 );
 | |
| 		udivide( r, n, n, r );
 | |
| 		takelow( np, n );
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	// indirectly computes n' s.t. 1 = r' r - n' n = GCD(r, n)
 | |
| 	BIGONETYPE void computeNRinverse2(T &n0, T &np)
 | |
| 	{
 | |
| 	BIGDOUBLESIZE(T, r);
 | |
| 	BIGDOUBLESIZE(T, n);
 | |
| 
 | |
| 	// r' = (1 + n' n) / r
 | |
| 	computeRinverse2(n0, np);
 | |
| 
 | |
| 	// n' = (r' r - 1) / n
 | |
| 	sethigh(r, np); // special case of r = 2^k
 | |
| 	decrement(r);
 | |
| 	usetlow(n, n0);
 | |
| 	udivide(r, n, n, r);
 | |
| 	takelow(np, n);
 | |
| 	}
 | |
| 	*/
 | |
| 	// Montgomery product u = a * b (mod n)
 | |
| 	BIGONETYPE void MonPro( T &ap, T &bp, T &n, T &np, T &u_out )
 | |
| 	{
 | |
| 		BIGDOUBLESIZE( T, t );
 | |
| 		BIGDOUBLESIZE( T, u );
 | |
| 		T m;
 | |
| 
 | |
| 		// t = a' b'
 | |
| 		umultiply( ap, bp, t );
 | |
| 
 | |
| 		// m = (low half of t)*np (mod r)
 | |
| 		takelow( m, t );
 | |
| 		umultiply( m, np );
 | |
| 
 | |
| 		// u = (t + m*n), u_out = u / r = high half of u
 | |
| 		umultiply( m, n, u );
 | |
| 
 | |
| 		add ( u, t )
 | |
| 
 | |
| 			;
 | |
| 		takehigh( u_out, u );
 | |
| 
 | |
| 		// if u >= n, return u - n, else u
 | |
| 		if ( ugreaterOrEqual( u_out, n ) )
 | |
| 			subtract( u_out, n );
 | |
| 	}
 | |
| 
 | |
| 	// indirectly calculates x = M^e (mod n)
 | |
| 	BIGONETYPE void MonModExp( T &x, T &M, T &e, T &n, T &np, T &xp0 )
 | |
| 	{
 | |
| 		// x' = xp0
 | |
| 
 | |
| 		set ( x, xp0 )
 | |
| 
 | |
| 			;
 | |
| 
 | |
| 		// find M' = M r (mod n)
 | |
| 		BIGDOUBLESIZE( T, dM );
 | |
| 
 | |
| 		BIGDOUBLESIZE( T, dn );
 | |
| 
 | |
| 		T Mp;
 | |
| 
 | |
| 		sethigh( dM, M ); // dM = M r
 | |
| 
 | |
| 		usetlow( dn, n );
 | |
| 
 | |
| 		umodulo( dM, dn, dM ); // dM = dM (mod n)
 | |
| 
 | |
| 		takelow( Mp, dM ); // M' = M r (mod n)
 | |
| 
 | |
| 		/*	i may be wrong, but it seems to me that the squaring
 | |
| 		results in a constant until we hit the first set bit
 | |
| 		this could save a lot of time, but it needs to be proven
 | |
| 		*/
 | |
| 
 | |
| 		s32 ii, bc;
 | |
| 
 | |
| 		word e_i;
 | |
| 
 | |
| 		// for i = k - 1 down to 0 do
 | |
| 		for ( ii = BIGWORDCOUNT( T ) - 1; ii >= 0; --ii )
 | |
| 		{
 | |
| 			e_i = e[ ii ];
 | |
| 			bc = WORDBITS;
 | |
| 
 | |
| 			while ( bc-- )
 | |
| 			{
 | |
| 				// if e_i = 1, x = MonPro(M', x')
 | |
| 
 | |
| 				if ( e_i & WORDHIGHBIT )
 | |
| 					goto start_squaring;
 | |
| 
 | |
| 				e_i <<= 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for ( ; ii >= 0; --ii )
 | |
| 		{
 | |
| 			e_i = e[ ii ];
 | |
| 			bc = WORDBITS;
 | |
| 
 | |
| 			while ( bc-- )
 | |
| 			{
 | |
| 				// x' = MonPro(x', x')
 | |
| 				MonPro( x, x, n, np, x );
 | |
| 
 | |
| 				// if e_i = 1, x = MonPro(M', x')
 | |
| 
 | |
| 				if ( e_i & WORDHIGHBIT )
 | |
| 				{
 | |
| 
 | |
| start_squaring:
 | |
| 					MonPro( Mp, x, n, np, x );
 | |
| 				}
 | |
| 
 | |
| 				e_i <<= 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// x = MonPro(x', 1)
 | |
| 		T one;
 | |
| 
 | |
| 		usetw( one, 1 );
 | |
| 
 | |
| 		MonPro( x, one, n, np, x );
 | |
| 	}
 | |
| 
 | |
| 	// indirectly calculates x = C ^ d (mod n) using the Chinese Remainder Thm
 | |
| 	BIGTWOTYPES void CRTModExp( Bigger &x, Bigger &C, Bigger &d, T &p, T &q, T &pInverse, T &pnp, T &pxp, T &qnp, T &qxp )
 | |
| 	{
 | |
| 		(void) qxp;
 | |
| 		(void) pxp;
 | |
| 		(void) pnp;
 | |
| 		(void) qnp;
 | |
| 
 | |
| 		// d1 = d mod (p - 1)
 | |
| 		Bigger dd1;
 | |
| 		T d1;
 | |
| 		usetlow( dd1, p );
 | |
| 		decrement( dd1 );
 | |
| 		umodulo( d, dd1, dd1 );
 | |
| 		takelow( d1, dd1 );
 | |
| 
 | |
| 		// M1 = C1^d1 (mod p)
 | |
| 		Bigger dp, dC1;
 | |
| 		T M1, C1;
 | |
| 		usetlow( dp, p );
 | |
| 		umodulo( C, dp, dC1 );
 | |
| 		takelow( C1, dC1 );
 | |
| 		simpleModExp( C1, d1, p, M1 );
 | |
| 		//MonModExp(M1, C1, d1, p, pnp, pxp);
 | |
| 
 | |
| 		// d2 = d mod (q - 1)
 | |
| 		Bigger dd2;
 | |
| 		T d2;
 | |
| 		usetlow( dd2, q );
 | |
| 		decrement( dd2 );
 | |
| 		umodulo( d, dd2, dd2 );
 | |
| 		takelow( d2, dd2 );
 | |
| 
 | |
| 		// M2 = C2^d2 (mod q)
 | |
| 		Bigger dq, dC2;
 | |
| 		T M2, C2;
 | |
| 		usetlow( dq, q );
 | |
| 		umodulo( C, dq, dC2 );
 | |
| 		takelow( C2, dC2 );
 | |
| 		simpleModExp( C2, d2, q, M2 );
 | |
| 		//MonModExp(M2, C2, d2, q, qnp, qxp);
 | |
| 
 | |
| 		// x = M1 + p * ((M2 - M1)(p^-1 mod q) mod q)
 | |
| 
 | |
| 		if ( ugreater( M2, M1 ) )
 | |
| 		{
 | |
| 			subtract( M2, M1 );
 | |
| 		}
 | |
| 
 | |
| 		else
 | |
| 		{
 | |
| 			subtract( M2, M1 );
 | |
| 
 | |
| 			add ( M2, q )
 | |
| 
 | |
| 				;
 | |
| 		}
 | |
| 
 | |
| 		// x = M1 + p * (( M2 )(p^-1 mod q) mod q)
 | |
| 
 | |
| 		umultiply( M2, pInverse, x );
 | |
| 
 | |
| 		// x = M1 + p * (( x ) mod q)
 | |
| 
 | |
| 		umodulo( x, dq, x );
 | |
| 
 | |
| 		// x = M1 + p * ( x )
 | |
| 
 | |
| 		umultiply( x, dp );
 | |
| 
 | |
| 		// x = M1 + ( x )
 | |
| 
 | |
| 		Bigger dM1;
 | |
| 
 | |
| 		usetlow( dM1, M1 );
 | |
| 
 | |
| 		// x = ( dM1 ) + ( x )
 | |
| 
 | |
| 		add ( x, dM1 )
 | |
| 
 | |
| 			;
 | |
| 	}
 | |
| 
 | |
| 	// generates a suitable public exponent s.t. 4 < e << phi, GCD(e, phi) = 1
 | |
| 	BIGONETYPE void computePublicExponent( T &phi, T &e )
 | |
| 	{
 | |
| 		T r, one, two;
 | |
| 		usetw( one, 1 );
 | |
| 		usetw( two, 2 );
 | |
| 		usetw( e, 65537 - 2 );
 | |
| 
 | |
| 		if ( ugreater( e, phi ) )
 | |
| 			usetw( e, 5 - 2 );
 | |
| 
 | |
| 		do
 | |
| 		{
 | |
| 			add ( e, two )
 | |
| 
 | |
| 				;
 | |
| 
 | |
| 			GCD( phi, e, r );
 | |
| 		}
 | |
| 
 | |
| 		while ( !equal( r, one ) );
 | |
| 	}
 | |
| 
 | |
| 	// directly computes private exponent
 | |
| 	BIGONETYPE void computePrivateExponent( T &e, T &phi, T &d )
 | |
| 	{
 | |
| 		// d = e^-1 (mod phi), 1 < e << phi
 | |
| 		computeModularInverse( e, phi, d );
 | |
| 	}
 | |
| 
 | |
| #ifdef RSASUPPORTGENPRIME
 | |
| 
 | |
| 	static const u16 PRIME_TABLE[ 256 ] =
 | |
| 	{
 | |
| 		3, 5, 7, 11, 13, 17, 19, 23,
 | |
| 			29, 31, 37, 41, 43, 47, 53, 59,
 | |
| 			61, 67, 71, 73, 79, 83, 89, 97,
 | |
| 			101, 103, 107, 109, 113, 127, 131, 137,
 | |
| 			139, 149, 151, 157, 163, 167, 173, 179,
 | |
| 			181, 191, 193, 197, 199, 211, 223, 227,
 | |
| 			229, 233, 239, 241, 251, 257, 263, 269,
 | |
| 			271, 277, 281, 283, 293, 307, 311, 313,
 | |
| 			317, 331, 337, 347, 349, 353, 359, 367,
 | |
| 			373, 379, 383, 389, 397, 401, 409, 419,
 | |
| 			421, 431, 433, 439, 443, 449, 457, 461,
 | |
| 			463, 467, 479, 487, 491, 499, 503, 509,
 | |
| 			521, 523, 541, 547, 557, 563, 569, 571,
 | |
| 			577, 587, 593, 599, 601, 607, 613, 617,
 | |
| 			619, 631, 641, 643, 647, 653, 659, 661,
 | |
| 			673, 677, 683, 691, 701, 709, 719, 727,
 | |
| 			733, 739, 743, 751, 757, 761, 769, 773,
 | |
| 			787, 797, 809, 811, 821, 823, 827, 829,
 | |
| 			839, 853, 857, 859, 863, 877, 881, 883,
 | |
| 			887, 907, 911, 919, 929, 937, 941, 947,
 | |
| 			953, 967, 971, 977, 983, 991, 997, 1009,
 | |
| 			1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051,
 | |
| 			1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103,
 | |
| 			1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171,
 | |
| 			1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
 | |
| 			1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
 | |
| 			1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327,
 | |
| 			1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427,
 | |
| 			1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471,
 | |
| 			1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
 | |
| 			1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579,
 | |
| 			1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621
 | |
| 	};
 | |
| 
 | |
| 	/*modified Rabin-Miller primality test (added small primes)
 | |
| 
 | |
| 	When picking a value for insurance, note that the probability of failure
 | |
| 	of the test to detect a composite number is at most 4^(-insurance), so:
 | |
| 	insurance max. probability of failure
 | |
| 	3   1.56%
 | |
| 	4   0.39%
 | |
| 	5   0.098% <-- default
 | |
| 	6   0.024%
 | |
| 	...
 | |
| 	*/
 | |
| 	BIGONETYPE bool RabinMillerPrimalityTest( T &n, u32 insurance )
 | |
| 	{
 | |
| 		// check divisibility by small primes <= 1621 (speeds up computation)
 | |
| 		T temp;
 | |
| 
 | |
| 		for ( u32 ii = 0; ii < 256; ++ii )
 | |
| 		{
 | |
| 			usetw( temp, PRIME_TABLE[ ii++ ] );
 | |
| 
 | |
| 			umodulo( n, temp, temp );
 | |
| 
 | |
| 			if ( isZero( temp ) )
 | |
| 				return false;
 | |
| 		}
 | |
| 
 | |
| 		// n1 = n - 1
 | |
| 		T n1;
 | |
| 
 | |
| 		set ( n1, n )
 | |
| 
 | |
| 			;
 | |
| 		decrement( n1 );
 | |
| 
 | |
| 		// write r 2^s = n - 1, r is odd
 | |
| 		T r;
 | |
| 
 | |
| 		u32 s = 0;
 | |
| 
 | |
| 		set ( r, n1 )
 | |
| 
 | |
| 			;
 | |
| 		while ( !( r[ 0 ] & 1 ) )
 | |
| 		{
 | |
| 			ushiftRight1( r );
 | |
| 			++s;
 | |
| 		}
 | |
| 
 | |
| 		// one = 1
 | |
| 		T one;
 | |
| 
 | |
| 		usetw( one, 1 );
 | |
| 
 | |
| 		// cache n -> dn
 | |
| 		BIGDOUBLESIZE( T, dy );
 | |
| 
 | |
| 		BIGDOUBLESIZE( T, dn );
 | |
| 
 | |
| 		usetlow( dn, n );
 | |
| 
 | |
| 		while ( insurance-- )
 | |
| 		{
 | |
| 			// choose random integer a s.t. 1 < a < n - 1
 | |
| 			T a;
 | |
| 			int index;
 | |
| 
 | |
| 			for ( index = 0; index < (int) sizeof( a ) / (int) sizeof( a[ 0 ] ); index++ )
 | |
| 				a[ index ] = randomMT();
 | |
| 
 | |
| 			umodulo( a, n1, a );
 | |
| 
 | |
| 			// compute y = a ^ r (mod n)
 | |
| 			T y;
 | |
| 
 | |
| 			simpleModExp( a, r, n, y );
 | |
| 
 | |
| 			if ( !equal( y, one ) && !equal( y, n1 ) )
 | |
| 			{
 | |
| 				u32 j = s;
 | |
| 
 | |
| 				while ( ( j-- > 1 ) && !equal( y, n1 ) )
 | |
| 				{
 | |
| 					umultiply( y, y, dy );
 | |
| 					umodulo( dy, dn, dy );
 | |
| 					takelow( y, dy );
 | |
| 
 | |
| 					if ( equal( y, one ) )
 | |
| 						return false;
 | |
| 				}
 | |
| 
 | |
| 				if ( !equal( y, n1 ) )
 | |
| 					return false;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	// generates a strong pseudo-prime
 | |
| 	BIGONETYPE void generateStrongPseudoPrime( T &n )
 | |
| 	{
 | |
| 		do
 | |
| 		{
 | |
| 			int index;
 | |
| 
 | |
| 			for ( index = 0; index < (int) sizeof( n ) / (int) sizeof( n[ 0 ] ); index++ )
 | |
| 				n[ index ] = randomMT();
 | |
| 
 | |
| 			n[ BIGWORDCOUNT( T ) - 1 ] |= WORDHIGHBIT;
 | |
| 
 | |
| 			//n[BIGWORDCOUNT(T) - 1] &= ~WORDHIGHBIT; n[BIGWORDCOUNT(T) - 1] |= WORDHIGHBIT >> 1;
 | |
| 			n[ 0 ] |= 1;
 | |
| 		}
 | |
| 
 | |
| 		while ( !RabinMillerPrimalityTest( n, 5 ) );
 | |
| 	}
 | |
| 
 | |
| #endif // RSASUPPORTGENPRIME
 | |
| 
 | |
| 
 | |
| 	//////// RSACrypt class ////////
 | |
| 
 | |
| 	BIGONETYPE class RAK_DLL_EXPORT RSACrypt : public RakNet::RakMemoryOverride
 | |
| 	{
 | |
| 		// public key
 | |
| 		T e, n;
 | |
| 		T np, xp;
 | |
| 
 | |
| 		// private key
 | |
| 		bool factorsAvailable;
 | |
| 		T d, phi;
 | |
| 		BIGHALFSIZE( T, p );
 | |
| 		BIGHALFSIZE( T, pnp );
 | |
| 		BIGHALFSIZE( T, pxp );
 | |
| 		BIGHALFSIZE( T, q );
 | |
| 		BIGHALFSIZE( T, qnp );
 | |
| 		BIGHALFSIZE( T, qxp );
 | |
| 		BIGHALFSIZE( T, pInverse );
 | |
| 
 | |
| 	public:
 | |
| 		RSACrypt()
 | |
| 		{
 | |
| 			reset();
 | |
| 		}
 | |
| 
 | |
| 		~RSACrypt()
 | |
| 		{
 | |
| 			reset();
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		void reset()
 | |
| 		{
 | |
| 			zero( d );
 | |
| 			zero( p );
 | |
| 			zero( q );
 | |
| 			zero( pInverse );
 | |
| 			factorsAvailable = false;
 | |
| 		}
 | |
| 
 | |
| #ifdef RSASUPPORTGENPRIME
 | |
| 
 | |
| 		void generateKeys()
 | |
| 		{
 | |
| 			BIGHALFSIZE( T, p0 );
 | |
| 			BIGHALFSIZE( T, q0 );
 | |
| 
 | |
| 			generateStrongPseudoPrime( p0 );
 | |
| 			generateStrongPseudoPrime( q0 );
 | |
| 
 | |
| 			setPrivateKey( p0, q0 );
 | |
| 		}
 | |
| 
 | |
| #endif // RSASUPPORTGENPRIME
 | |
| 
 | |
| 		BIGSMALLTYPE void setPrivateKey( Smaller &c_p, Smaller &c_q )
 | |
| 		{
 | |
| 			factorsAvailable = true;
 | |
| 
 | |
| 			// re-order factors s.t. q > p
 | |
| 
 | |
| 			if ( ugreater( c_p, c_q ) )
 | |
| 			{
 | |
| 				set ( q, c_p )
 | |
| 
 | |
| 					;
 | |
| 				set ( p, c_q )
 | |
| 
 | |
| 					;
 | |
| 			}
 | |
| 
 | |
| 			else
 | |
| 			{
 | |
| 				set ( p, c_p )
 | |
| 
 | |
| 					;
 | |
| 				set ( q, c_q )
 | |
| 
 | |
| 					;
 | |
| 			}
 | |
| 
 | |
| 			// phi = (p - 1)(q - 1)
 | |
| 			BIGHALFSIZE( T, p1 );
 | |
| 
 | |
| 			BIGHALFSIZE( T, q1 );
 | |
| 
 | |
| 			set ( p1, p )
 | |
| 
 | |
| 				;
 | |
| 			decrement( p1 );
 | |
| 
 | |
| 			set ( q1, q )
 | |
| 
 | |
| 				;
 | |
| 			decrement( q1 );
 | |
| 
 | |
| 			umultiply( p1, q1, phi );
 | |
| 
 | |
| 			// compute e
 | |
| 			computePublicExponent( phi, e );
 | |
| 
 | |
| 			// compute d
 | |
| 			computePrivateExponent( e, phi, d );
 | |
| 
 | |
| 			// compute p^-1 mod q
 | |
| 			computeModularInverse( p, q, pInverse );
 | |
| 
 | |
| 			// compute n = pq
 | |
| 			umultiply( p, q, n );
 | |
| 
 | |
| 			// find n'
 | |
| 			computeNRinverse( n, np );
 | |
| 
 | |
| 			// x' = 1*r (mod n)
 | |
| 			rModn( n, xp );
 | |
| 
 | |
| 			// find pn'
 | |
| 			computeNRinverse( p, pnp );
 | |
| 
 | |
| 			//   computeNRinverse2(p, pnp);
 | |
| 
 | |
| 			// px' = 1*r (mod p)
 | |
| 			rModn( p, pxp );
 | |
| 
 | |
| 			// find qn'
 | |
| 			computeNRinverse( q, qnp );
 | |
| 
 | |
| 			// qx' = 1*r (mod q)
 | |
| 			rModn( q, qxp );
 | |
| 		}
 | |
| 
 | |
| 		void setPublicKey( u32 c_e, T &c_n )
 | |
| 		{
 | |
| 			reset(); // in case we knew a private key
 | |
| 
 | |
| 			usetw( e, c_e );
 | |
| 
 | |
| 			set ( n, c_n )
 | |
| 
 | |
| 				;
 | |
| 
 | |
| 			// find n'
 | |
| 			computeNRinverse( n, np );
 | |
| 
 | |
| 			// x' = 1*r (mod n)
 | |
| 			rModn( n, xp );
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		void getPublicKey( u32 &c_e, T &c_n )
 | |
| 		{
 | |
| 			c_e = e[ 0 ];
 | |
| 
 | |
| 			set ( c_n, n )
 | |
| 
 | |
| 				;
 | |
| 		}
 | |
| 
 | |
| 		BIGSMALLTYPE void getPrivateKey( Smaller &c_p, Smaller &c_q )
 | |
| 		{
 | |
| 			set ( c_p, p )
 | |
| 
 | |
| 				;
 | |
| 			set ( c_q, q )
 | |
| 
 | |
| 				;
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 		void encrypt( T &M, T &x )
 | |
| 		{
 | |
| 			if ( factorsAvailable )
 | |
| 				CRTModExp( x, M, e, p, q, pInverse, pnp, pxp, qnp, qxp );
 | |
| 			else
 | |
| 				simpleModExp( M, e, n, x );
 | |
| 		}
 | |
| 
 | |
| 		void decrypt( T &C, T &x )
 | |
| 		{
 | |
| 			if ( factorsAvailable )
 | |
| 				CRTModExp( x, C, d, p, q, pInverse, pnp, pxp, qnp, qxp );
 | |
| 		}
 | |
| 	};
 | |
| }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning( pop )
 | |
| #endif
 | |
| 
 | |
| #endif // #if !defined(_XBOX360) && !defined(_WIN32_WCE)
 | |
| 
 | |
| #endif // RSACRYPT_H
 | |
| 
 | 
