mirror of
https://github.com/DarkflameUniverse/DarkflameServer.git
synced 2024-12-23 14:03:34 +00:00
0545adfac3
Have fun!
1078 lines
27 KiB
C++
1078 lines
27 KiB
C++
/// \file
|
|
///
|
|
/// This file is part of RakNet Copyright 2003 Kevin Jenkins.
|
|
///
|
|
/// Usage of RakNet is subject to the appropriate license agreement.
|
|
/// Creative Commons Licensees are subject to the
|
|
/// license found at
|
|
/// http://creativecommons.org/licenses/by-nc/2.5/
|
|
/// Single application licensees are subject to the license found at
|
|
/// http://www.jenkinssoftware.com/SingleApplicationLicense.html
|
|
/// Custom license users are subject to the terms therein.
|
|
/// GPL license users are subject to the GNU General Public
|
|
/// License as published by the Free
|
|
/// Software Foundation; either version 2 of the License, or (at your
|
|
/// option) any later version.
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1299 // VC6 doesn't support template specialization
|
|
|
|
#include "BitStream.h"
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#ifdef _XBOX360
|
|
#include "Console1Includes.h"
|
|
#elif defined(_WIN32)
|
|
#include <winsock2.h> // htonl
|
|
#elif defined(_CONSOLE_2)
|
|
#include "Console2Includes.h"
|
|
#else
|
|
#include <arpa/inet.h>
|
|
#endif
|
|
|
|
// MSWin uses _copysign, others use copysign...
|
|
#ifndef _WIN32
|
|
#define _copysign copysign
|
|
#endif
|
|
|
|
|
|
|
|
using namespace RakNet;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( push )
|
|
#endif
|
|
|
|
BitStream::BitStream()
|
|
{
|
|
numberOfBitsUsed = 0;
|
|
//numberOfBitsAllocated = 32 * 8;
|
|
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE * 8;
|
|
readOffset = 0;
|
|
//data = ( unsigned char* ) rakMalloc( 32 );
|
|
data = ( unsigned char* ) stackData;
|
|
|
|
#ifdef _DEBUG
|
|
// assert( data );
|
|
#endif
|
|
//memset(data, 0, 32);
|
|
copyData = true;
|
|
}
|
|
|
|
BitStream::BitStream( int initialBytesToAllocate )
|
|
{
|
|
numberOfBitsUsed = 0;
|
|
readOffset = 0;
|
|
if (initialBytesToAllocate <= BITSTREAM_STACK_ALLOCATION_SIZE)
|
|
{
|
|
data = ( unsigned char* ) stackData;
|
|
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE * 8;
|
|
}
|
|
else
|
|
{
|
|
data = ( unsigned char* ) malloc( initialBytesToAllocate );
|
|
numberOfBitsAllocated = initialBytesToAllocate << 3;
|
|
}
|
|
#ifdef _DEBUG
|
|
assert( data );
|
|
#endif
|
|
// memset(data, 0, initialBytesToAllocate);
|
|
copyData = true;
|
|
}
|
|
|
|
BitStream::BitStream( unsigned char* _data, unsigned int lengthInBytes, bool _copyData )
|
|
{
|
|
numberOfBitsUsed = lengthInBytes << 3;
|
|
readOffset = 0;
|
|
copyData = _copyData;
|
|
numberOfBitsAllocated = lengthInBytes << 3;
|
|
|
|
if ( copyData )
|
|
{
|
|
if ( lengthInBytes > 0 )
|
|
{
|
|
if (lengthInBytes < BITSTREAM_STACK_ALLOCATION_SIZE)
|
|
{
|
|
data = ( unsigned char* ) stackData;
|
|
numberOfBitsAllocated = BITSTREAM_STACK_ALLOCATION_SIZE << 3;
|
|
}
|
|
else
|
|
{
|
|
data = ( unsigned char* ) malloc( lengthInBytes );
|
|
}
|
|
#ifdef _DEBUG
|
|
assert( data );
|
|
#endif
|
|
memcpy( data, _data, lengthInBytes );
|
|
}
|
|
else
|
|
data = 0;
|
|
}
|
|
else
|
|
data = ( unsigned char* ) _data;
|
|
}
|
|
|
|
// Use this if you pass a pointer copy to the constructor (_copyData==false) and want to overallocate to prevent reallocation
|
|
void BitStream::SetNumberOfBitsAllocated( const unsigned int lengthInBits )
|
|
{
|
|
#ifdef _DEBUG
|
|
assert( lengthInBits >= ( unsigned int ) numberOfBitsAllocated );
|
|
#endif
|
|
numberOfBitsAllocated = lengthInBits;
|
|
}
|
|
|
|
BitStream::~BitStream()
|
|
{
|
|
if ( copyData && numberOfBitsAllocated > (BITSTREAM_STACK_ALLOCATION_SIZE << 3))
|
|
RakFree( data ); // Use realloc and free so we are more efficient than delete and new for resizing
|
|
}
|
|
|
|
void BitStream::Reset( void )
|
|
{
|
|
// Note: Do NOT reallocate memory because BitStream is used
|
|
// in places to serialize/deserialize a buffer. Reallocation
|
|
// is a dangerous operation (may result in leaks).
|
|
|
|
if ( numberOfBitsUsed > 0 )
|
|
{
|
|
// memset(data, 0, BITS_TO_BYTES(numberOfBitsUsed));
|
|
}
|
|
|
|
// Don't free memory here for speed efficiency
|
|
//free(data); // Use realloc and free so we are more efficient than delete and new for resizing
|
|
numberOfBitsUsed = 0;
|
|
|
|
//numberOfBitsAllocated=8;
|
|
readOffset = 0;
|
|
|
|
//data=(unsigned char*)rakMalloc(1);
|
|
// if (numberOfBitsAllocated>0)
|
|
// memset(data, 0, BITS_TO_BYTES(numberOfBitsAllocated));
|
|
}
|
|
|
|
// Write an array or casted stream
|
|
void BitStream::Write( const char* input, const int numberOfBytes )
|
|
{
|
|
if (numberOfBytes==0)
|
|
return;
|
|
|
|
// Optimization:
|
|
if ((numberOfBitsUsed & 7) == 0)
|
|
{
|
|
AddBitsAndReallocate( BYTES_TO_BITS(numberOfBytes) );
|
|
memcpy(data+BITS_TO_BYTES(numberOfBitsUsed), input, numberOfBytes);
|
|
numberOfBitsUsed+=BYTES_TO_BITS(numberOfBytes);
|
|
}
|
|
else
|
|
{
|
|
WriteBits( ( unsigned char* ) input, numberOfBytes * 8, true );
|
|
}
|
|
|
|
}
|
|
void BitStream::Write( BitStream *bitStream)
|
|
{
|
|
Write(bitStream, bitStream->GetNumberOfBitsUsed());
|
|
}
|
|
void BitStream::Write( BitStream *bitStream, int numberOfBits )
|
|
{
|
|
AddBitsAndReallocate( numberOfBits );
|
|
int numberOfBitsMod8;
|
|
|
|
while (numberOfBits-->0 && bitStream->readOffset + 1 <= bitStream->numberOfBitsUsed)
|
|
{
|
|
numberOfBitsMod8 = numberOfBitsUsed & 7;
|
|
if ( numberOfBitsMod8 == 0 )
|
|
{
|
|
// New byte
|
|
if (bitStream->data[ bitStream->readOffset >> 3 ] & ( 0x80 >> ( bitStream->readOffset & 7 ) ) )
|
|
{
|
|
// Write 1
|
|
data[ numberOfBitsUsed >> 3 ] = 0x80;
|
|
}
|
|
else
|
|
{
|
|
// Write 0
|
|
data[ numberOfBitsUsed >> 3 ] = 0;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
// Existing byte
|
|
if (bitStream->data[ bitStream->readOffset >> 3 ] & ( 0x80 >> ( bitStream->readOffset & 7 ) ) )
|
|
data[ numberOfBitsUsed >> 3 ] |= 0x80 >> ( numberOfBitsMod8 ); // Set the bit to 1
|
|
// else 0, do nothing
|
|
}
|
|
|
|
bitStream->readOffset++;
|
|
numberOfBitsUsed++;
|
|
}
|
|
}
|
|
|
|
// Read an array or casted stream
|
|
bool BitStream::Read( char* output, const int numberOfBytes )
|
|
{
|
|
// Optimization:
|
|
if ((readOffset & 7) == 0)
|
|
{
|
|
if ( readOffset + ( numberOfBytes << 3 ) > numberOfBitsUsed )
|
|
return false;
|
|
|
|
// Write the data
|
|
memcpy( output, data + ( readOffset >> 3 ), numberOfBytes );
|
|
|
|
readOffset += numberOfBytes << 3;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return ReadBits( ( unsigned char* ) output, numberOfBytes * 8 );
|
|
}
|
|
}
|
|
|
|
// Sets the read pointer back to the beginning of your data.
|
|
void BitStream::ResetReadPointer( void )
|
|
{
|
|
readOffset = 0;
|
|
}
|
|
|
|
// Sets the write pointer back to the beginning of your data.
|
|
void BitStream::ResetWritePointer( void )
|
|
{
|
|
numberOfBitsUsed = 0;
|
|
}
|
|
|
|
// Write a 0
|
|
void BitStream::Write0( void )
|
|
{
|
|
AddBitsAndReallocate( 1 );
|
|
|
|
// New bytes need to be zeroed
|
|
if ( ( numberOfBitsUsed & 7 ) == 0 )
|
|
data[ numberOfBitsUsed >> 3 ] = 0;
|
|
|
|
numberOfBitsUsed++;
|
|
}
|
|
|
|
// Write a 1
|
|
void BitStream::Write1( void )
|
|
{
|
|
AddBitsAndReallocate( 1 );
|
|
|
|
int numberOfBitsMod8 = numberOfBitsUsed & 7;
|
|
|
|
if ( numberOfBitsMod8 == 0 )
|
|
data[ numberOfBitsUsed >> 3 ] = 0x80;
|
|
else
|
|
data[ numberOfBitsUsed >> 3 ] |= 0x80 >> ( numberOfBitsMod8 ); // Set the bit to 1
|
|
|
|
numberOfBitsUsed++;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4800 ) // warning C4100: <variable name> : unreferenced formal parameter
|
|
#endif
|
|
// Returns true if the next data read is a 1, false if it is a 0
|
|
bool BitStream::ReadBit( void )
|
|
{
|
|
bool result = ( data[ readOffset >> 3 ] & ( 0x80 >> ( readOffset & 7 ) ) );
|
|
readOffset++;
|
|
return result;
|
|
}
|
|
|
|
// Align the bitstream to the byte boundary and then write the specified number of bits.
|
|
// This is faster than WriteBits but wastes the bits to do the alignment and requires you to call
|
|
// SetReadToByteAlignment at the corresponding read position
|
|
void BitStream::WriteAlignedBytes( void* input, const int numberOfBytesToWrite )
|
|
{
|
|
#ifdef _DEBUG
|
|
if (numberOfBytesToWrite<=0)
|
|
{
|
|
assert( numberOfBytesToWrite > 0 );
|
|
}
|
|
#endif
|
|
|
|
AlignWriteToByteBoundary();
|
|
Write((const char*) input, numberOfBytesToWrite);
|
|
}
|
|
|
|
/// Aligns the bitstream, writes inputLength, and writes input. Won't write beyond maxBytesToWrite
|
|
void BitStream::WriteAlignedBytesSafe( void *input, const int inputLength, const int maxBytesToWrite )
|
|
{
|
|
if (input==0 || inputLength==0)
|
|
{
|
|
WriteCompressed((unsigned int)0);
|
|
return;
|
|
}
|
|
WriteCompressed(inputLength);
|
|
WriteAlignedBytes((void*) input, inputLength < maxBytesToWrite ? inputLength : maxBytesToWrite);
|
|
}
|
|
|
|
// Read bits, starting at the next aligned bits. Note that the modulus 8 starting offset of the
|
|
// sequence must be the same as was used with WriteBits. This will be a problem with packet coalescence
|
|
// unless you byte align the coalesced packets.
|
|
bool BitStream::ReadAlignedBytes( void* output, const int numberOfBytesToRead )
|
|
{
|
|
#ifdef _DEBUG
|
|
assert( numberOfBytesToRead > 0 );
|
|
#endif
|
|
|
|
if ( numberOfBytesToRead <= 0 )
|
|
return false;
|
|
|
|
// Byte align
|
|
AlignReadToByteBoundary();
|
|
|
|
if ( readOffset + ( numberOfBytesToRead << 3 ) > numberOfBitsUsed )
|
|
return false;
|
|
|
|
// Write the data
|
|
memcpy( output, data + ( readOffset >> 3 ), numberOfBytesToRead );
|
|
|
|
readOffset += numberOfBytesToRead << 3;
|
|
|
|
return true;
|
|
}
|
|
bool BitStream::ReadAlignedBytesSafe( void *input, int &inputLength, const int maxBytesToRead )
|
|
{
|
|
if (ReadCompressed(inputLength)==false)
|
|
return false;
|
|
if (inputLength > maxBytesToRead)
|
|
inputLength=maxBytesToRead;
|
|
if (inputLength==0)
|
|
return true;
|
|
return ReadAlignedBytes((unsigned char*) input, inputLength);
|
|
}
|
|
bool BitStream::ReadAlignedBytesSafeAlloc( char **input, int &inputLength, const int maxBytesToRead )
|
|
{
|
|
rakFree(*input);
|
|
*input=0;
|
|
if (ReadCompressed(inputLength)==false)
|
|
return false;
|
|
if (inputLength > maxBytesToRead)
|
|
inputLength=maxBytesToRead;
|
|
if (inputLength==0)
|
|
return true;
|
|
*input = (char*) rakMalloc( BITS_TO_BYTES( inputLength ) );
|
|
return ReadAlignedBytes((unsigned char*) *input, inputLength);
|
|
}
|
|
// Align the next write and/or read to a byte boundary. This can be used to 'waste' bits to byte align for efficiency reasons
|
|
void BitStream::AlignWriteToByteBoundary( void )
|
|
{
|
|
if ( numberOfBitsUsed )
|
|
numberOfBitsUsed += 8 - ( (( numberOfBitsUsed - 1 ) & 7) + 1 );
|
|
}
|
|
|
|
// Align the next write and/or read to a byte boundary. This can be used to 'waste' bits to byte align for efficiency reasons
|
|
void BitStream::AlignReadToByteBoundary( void )
|
|
{
|
|
if ( readOffset )
|
|
readOffset += 8 - ( (( readOffset - 1 ) & 7 ) + 1 );
|
|
}
|
|
|
|
// Write numberToWrite bits from the input source
|
|
void BitStream::WriteBits( const unsigned char *input, int numberOfBitsToWrite, const bool rightAlignedBits )
|
|
{
|
|
if (numberOfBitsToWrite<=0)
|
|
return;
|
|
|
|
AddBitsAndReallocate( numberOfBitsToWrite );
|
|
int offset = 0;
|
|
unsigned char dataByte;
|
|
int numberOfBitsUsedMod8;
|
|
|
|
numberOfBitsUsedMod8 = numberOfBitsUsed & 7;
|
|
|
|
// Faster to put the while at the top surprisingly enough
|
|
while ( numberOfBitsToWrite > 0 )
|
|
//do
|
|
{
|
|
dataByte = *( input + offset );
|
|
|
|
if ( numberOfBitsToWrite < 8 && rightAlignedBits ) // rightAlignedBits means in the case of a partial byte, the bits are aligned from the right (bit 0) rather than the left (as in the normal internal representation)
|
|
dataByte <<= 8 - numberOfBitsToWrite; // shift left to get the bits on the left, as in our internal representation
|
|
|
|
// Writing to a new byte each time
|
|
if ( numberOfBitsUsedMod8 == 0 )
|
|
* ( data + ( numberOfBitsUsed >> 3 ) ) = dataByte;
|
|
else
|
|
{
|
|
// Copy over the new data.
|
|
*( data + ( numberOfBitsUsed >> 3 ) ) |= dataByte >> ( numberOfBitsUsedMod8 ); // First half
|
|
|
|
if ( 8 - ( numberOfBitsUsedMod8 ) < 8 && 8 - ( numberOfBitsUsedMod8 ) < numberOfBitsToWrite ) // If we didn't write it all out in the first half (8 - (numberOfBitsUsed%8) is the number we wrote in the first half)
|
|
{
|
|
*( data + ( numberOfBitsUsed >> 3 ) + 1 ) = (unsigned char) ( dataByte << ( 8 - ( numberOfBitsUsedMod8 ) ) ); // Second half (overlaps byte boundary)
|
|
}
|
|
}
|
|
|
|
if ( numberOfBitsToWrite >= 8 )
|
|
numberOfBitsUsed += 8;
|
|
else
|
|
numberOfBitsUsed += numberOfBitsToWrite;
|
|
|
|
numberOfBitsToWrite -= 8;
|
|
|
|
offset++;
|
|
}
|
|
// } while(numberOfBitsToWrite>0);
|
|
}
|
|
|
|
// Set the stream to some initial data. For internal use
|
|
void BitStream::SetData( unsigned char *input )
|
|
{
|
|
data=input;
|
|
copyData=false;
|
|
}
|
|
|
|
// Assume the input source points to a native type, compress and write it
|
|
void BitStream::WriteCompressed( const unsigned char* input,
|
|
const int size, const bool unsignedData )
|
|
{
|
|
int currentByte = ( size >> 3 ) - 1; // PCs
|
|
|
|
unsigned char byteMatch;
|
|
|
|
if ( unsignedData )
|
|
{
|
|
byteMatch = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
byteMatch = 0xFF;
|
|
}
|
|
|
|
// Write upper bytes with a single 1
|
|
// From high byte to low byte, if high byte is a byteMatch then write a 1 bit. Otherwise write a 0 bit and then write the remaining bytes
|
|
while ( currentByte > 0 )
|
|
{
|
|
if ( input[ currentByte ] == byteMatch ) // If high byte is byteMatch (0 of 0xff) then it would have the same value shifted
|
|
{
|
|
bool b = true;
|
|
Write( b );
|
|
}
|
|
else
|
|
{
|
|
// Write the remainder of the data after writing 0
|
|
bool b = false;
|
|
Write( b );
|
|
|
|
WriteBits( input, ( currentByte + 1 ) << 3, true );
|
|
// currentByte--;
|
|
|
|
|
|
return ;
|
|
}
|
|
|
|
currentByte--;
|
|
}
|
|
|
|
// If the upper half of the last byte is a 0 (positive) or 16 (negative) then write a 1 and the remaining 4 bits. Otherwise write a 0 and the 8 bites.
|
|
if ( ( unsignedData && ( ( *( input + currentByte ) ) & 0xF0 ) == 0x00 ) ||
|
|
( unsignedData == false && ( ( *( input + currentByte ) ) & 0xF0 ) == 0xF0 ) )
|
|
{
|
|
bool b = true;
|
|
Write( b );
|
|
WriteBits( input + currentByte, 4, true );
|
|
}
|
|
|
|
else
|
|
{
|
|
bool b = false;
|
|
Write( b );
|
|
WriteBits( input + currentByte, 8, true );
|
|
}
|
|
}
|
|
|
|
// Read numberOfBitsToRead bits to the output source
|
|
// alignBitsToRight should be set to true to convert internal bitstream data to userdata
|
|
// It should be false if you used WriteBits with rightAlignedBits false
|
|
bool BitStream::ReadBits( unsigned char* output, int numberOfBitsToRead, const bool alignBitsToRight )
|
|
{
|
|
#ifdef _DEBUG
|
|
// assert( numberOfBitsToRead > 0 );
|
|
#endif
|
|
if (numberOfBitsToRead<=0)
|
|
return false;
|
|
|
|
if ( readOffset + numberOfBitsToRead > numberOfBitsUsed )
|
|
return false;
|
|
|
|
int readOffsetMod8;
|
|
|
|
int offset = 0;
|
|
|
|
memset( output, 0, BITS_TO_BYTES( numberOfBitsToRead ) );
|
|
|
|
readOffsetMod8 = readOffset & 7;
|
|
|
|
// do
|
|
// Faster to put the while at the top surprisingly enough
|
|
while ( numberOfBitsToRead > 0 )
|
|
{
|
|
*( output + offset ) |= *( data + ( readOffset >> 3 ) ) << ( readOffsetMod8 ); // First half
|
|
|
|
if ( readOffsetMod8 > 0 && numberOfBitsToRead > 8 - ( readOffsetMod8 ) ) // If we have a second half, we didn't read enough bytes in the first half
|
|
*( output + offset ) |= *( data + ( readOffset >> 3 ) + 1 ) >> ( 8 - ( readOffsetMod8 ) ); // Second half (overlaps byte boundary)
|
|
|
|
numberOfBitsToRead -= 8;
|
|
|
|
if ( numberOfBitsToRead < 0 ) // Reading a partial byte for the last byte, shift right so the data is aligned on the right
|
|
{
|
|
|
|
if ( alignBitsToRight )
|
|
* ( output + offset ) >>= -numberOfBitsToRead;
|
|
|
|
readOffset += 8 + numberOfBitsToRead;
|
|
}
|
|
else
|
|
readOffset += 8;
|
|
|
|
offset++;
|
|
|
|
}
|
|
|
|
//} while(numberOfBitsToRead>0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Assume the input source points to a compressed native type. Decompress and read it
|
|
bool BitStream::ReadCompressed( unsigned char* output,
|
|
const int size, const bool unsignedData )
|
|
{
|
|
int currentByte = ( size >> 3 ) - 1;
|
|
|
|
|
|
unsigned char byteMatch, halfByteMatch;
|
|
|
|
if ( unsignedData )
|
|
{
|
|
byteMatch = 0;
|
|
halfByteMatch = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
byteMatch = 0xFF;
|
|
halfByteMatch = 0xF0;
|
|
}
|
|
|
|
// Upper bytes are specified with a single 1 if they match byteMatch
|
|
// From high byte to low byte, if high byte is a byteMatch then write a 1 bit. Otherwise write a 0 bit and then write the remaining bytes
|
|
while ( currentByte > 0 )
|
|
{
|
|
// If we read a 1 then the data is byteMatch.
|
|
|
|
bool b;
|
|
|
|
if ( Read( b ) == false )
|
|
return false;
|
|
|
|
if ( b ) // Check that bit
|
|
{
|
|
output[ currentByte ] = byteMatch;
|
|
currentByte--;
|
|
}
|
|
else
|
|
{
|
|
// Read the rest of the bytes
|
|
|
|
if ( ReadBits( output, ( currentByte + 1 ) << 3 ) == false )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// All but the first bytes are byteMatch. If the upper half of the last byte is a 0 (positive) or 16 (negative) then what we read will be a 1 and the remaining 4 bits.
|
|
// Otherwise we read a 0 and the 8 bytes
|
|
//assert(readOffset+1 <=numberOfBitsUsed); // If this assert is hit the stream wasn't long enough to read from
|
|
if ( readOffset + 1 > numberOfBitsUsed )
|
|
return false;
|
|
|
|
bool b;
|
|
|
|
if ( Read( b ) == false )
|
|
return false;
|
|
|
|
if ( b ) // Check that bit
|
|
{
|
|
|
|
if ( ReadBits( output + currentByte, 4 ) == false )
|
|
return false;
|
|
|
|
output[ currentByte ] |= halfByteMatch; // We have to set the high 4 bits since these are set to 0 by ReadBits
|
|
}
|
|
else
|
|
{
|
|
if ( ReadBits( output + currentByte, 8 ) == false )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Reallocates (if necessary) in preparation of writing numberOfBitsToWrite
|
|
void BitStream::AddBitsAndReallocate( const int numberOfBitsToWrite )
|
|
{
|
|
if (numberOfBitsToWrite <= 0)
|
|
return;
|
|
|
|
int newNumberOfBitsAllocated = numberOfBitsToWrite + numberOfBitsUsed;
|
|
|
|
if ( numberOfBitsToWrite + numberOfBitsUsed > 0 && ( ( numberOfBitsAllocated - 1 ) >> 3 ) < ( ( newNumberOfBitsAllocated - 1 ) >> 3 ) ) // If we need to allocate 1 or more new bytes
|
|
{
|
|
#ifdef _DEBUG
|
|
// If this assert hits then we need to specify true for the third parameter in the constructor
|
|
// It needs to reallocate to hold all the data and can't do it unless we allocated to begin with
|
|
assert( copyData == true );
|
|
#endif
|
|
|
|
// Less memory efficient but saves on news and deletes
|
|
newNumberOfBitsAllocated = ( numberOfBitsToWrite + numberOfBitsUsed ) * 2;
|
|
// int newByteOffset = BITS_TO_BYTES( numberOfBitsAllocated );
|
|
// Use realloc and free so we are more efficient than delete and new for resizing
|
|
int amountToAllocate = BITS_TO_BYTES( newNumberOfBitsAllocated );
|
|
if (data==(unsigned char*)stackData)
|
|
{
|
|
if (amountToAllocate > BITSTREAM_STACK_ALLOCATION_SIZE)
|
|
{
|
|
data = ( unsigned char* ) rakMalloc( amountToAllocate );
|
|
|
|
// need to copy the stack data over to our new memory area too
|
|
memcpy ((void *)data, (void *)stackData, BITS_TO_BYTES( numberOfBitsAllocated ));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
data = ( unsigned char* ) RakRealloc( data, amountToAllocate );
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
assert( data ); // Make sure realloc succeeded
|
|
#endif
|
|
// memset(data+newByteOffset, 0, ((newNumberOfBitsAllocated-1)>>3) - ((numberOfBitsAllocated-1)>>3)); // Set the new data block to 0
|
|
}
|
|
|
|
if ( newNumberOfBitsAllocated > numberOfBitsAllocated )
|
|
numberOfBitsAllocated = newNumberOfBitsAllocated;
|
|
}
|
|
unsigned int BitStream::GetNumberOfBitsAllocated(void) const
|
|
{
|
|
return numberOfBitsAllocated;
|
|
}
|
|
|
|
// Should hit if reads didn't match writes
|
|
void BitStream::AssertStreamEmpty( void )
|
|
{
|
|
assert( readOffset == numberOfBitsUsed );
|
|
}
|
|
|
|
void BitStream::PrintBits( void ) const
|
|
{
|
|
if ( numberOfBitsUsed <= 0 )
|
|
{
|
|
printf( "No bits\n" );
|
|
return ;
|
|
}
|
|
|
|
for ( int counter = 0; counter < BITS_TO_BYTES( numberOfBitsUsed ); counter++ )
|
|
{
|
|
int stop;
|
|
|
|
if ( counter == ( numberOfBitsUsed - 1 ) >> 3 )
|
|
stop = 8 - ( ( ( numberOfBitsUsed - 1 ) & 7 ) + 1 );
|
|
else
|
|
stop = 0;
|
|
|
|
for ( int counter2 = 7; counter2 >= stop; counter2-- )
|
|
{
|
|
if ( ( data[ counter ] >> counter2 ) & 1 )
|
|
putchar( '1' );
|
|
else
|
|
putchar( '0' );
|
|
}
|
|
|
|
putchar( ' ' );
|
|
}
|
|
|
|
putchar( '\n' );
|
|
}
|
|
|
|
|
|
// Exposes the data for you to look at, like PrintBits does.
|
|
// Data will point to the stream. Returns the length in bits of the stream.
|
|
int BitStream::CopyData( unsigned char** _data ) const
|
|
{
|
|
#ifdef _DEBUG
|
|
assert( numberOfBitsUsed > 0 );
|
|
#endif
|
|
|
|
*_data = (unsigned char*) rakMalloc( BITS_TO_BYTES( numberOfBitsUsed ) );
|
|
memcpy( *_data, data, sizeof(unsigned char) * ( BITS_TO_BYTES( numberOfBitsUsed ) ) );
|
|
return numberOfBitsUsed;
|
|
}
|
|
|
|
// Ignore data we don't intend to read
|
|
void BitStream::IgnoreBits( const int numberOfBits )
|
|
{
|
|
readOffset += numberOfBits;
|
|
}
|
|
|
|
void BitStream::IgnoreBytes( const int numberOfBytes )
|
|
{
|
|
IgnoreBits(BYTES_TO_BITS(numberOfBytes));
|
|
}
|
|
|
|
// Move the write pointer to a position on the array. Dangerous if you don't know what you are doing!
|
|
void BitStream::SetWriteOffset( const int offset )
|
|
{
|
|
numberOfBitsUsed = offset;
|
|
}
|
|
|
|
/*
|
|
int BitStream::GetWriteOffset( void ) const
|
|
{
|
|
return numberOfBitsUsed;
|
|
}
|
|
|
|
// Returns the length in bits of the stream
|
|
int BitStream::GetNumberOfBitsUsed( void ) const
|
|
{
|
|
return GetWriteOffset();
|
|
}
|
|
|
|
// Returns the length in bytes of the stream
|
|
int BitStream::GetNumberOfBytesUsed( void ) const
|
|
{
|
|
return BITS_TO_BYTES( numberOfBitsUsed );
|
|
}
|
|
|
|
// Returns the number of bits into the stream that we have read
|
|
int BitStream::GetReadOffset( void ) const
|
|
{
|
|
return readOffset;
|
|
}
|
|
|
|
|
|
// Sets the read bit index
|
|
void BitStream::SetReadOffset( int newReadOffset )
|
|
{
|
|
readOffset=newReadOffset;
|
|
}
|
|
|
|
// Returns the number of bits left in the stream that haven't been read
|
|
int BitStream::GetNumberOfUnreadBits( void ) const
|
|
{
|
|
return numberOfBitsUsed - readOffset;
|
|
}
|
|
// Exposes the internal data
|
|
unsigned char* BitStream::GetData( void ) const
|
|
{
|
|
return data;
|
|
}
|
|
|
|
*/
|
|
// If we used the constructor version with copy data off, this makes sure it is set to on and the data pointed to is copied.
|
|
void BitStream::AssertCopyData( void )
|
|
{
|
|
if ( copyData == false )
|
|
{
|
|
copyData = true;
|
|
|
|
if ( numberOfBitsAllocated > 0 )
|
|
{
|
|
unsigned char * newdata = ( unsigned char* ) rakMalloc( BITS_TO_BYTES( numberOfBitsAllocated ) );
|
|
#ifdef _DEBUG
|
|
|
|
assert( data );
|
|
#endif
|
|
|
|
memcpy( newdata, data, BITS_TO_BYTES( numberOfBitsAllocated ) );
|
|
data = newdata;
|
|
}
|
|
|
|
else
|
|
data = 0;
|
|
}
|
|
}
|
|
void BitStream::ReverseBytes(unsigned char *input, unsigned char *output, int length)
|
|
{
|
|
for (int i=0; i < length; i++)
|
|
output[i]=input[length-i-1];
|
|
}
|
|
void BitStream::ReverseBytesInPlace(unsigned char *data, int length)
|
|
{
|
|
unsigned char temp;
|
|
int i;
|
|
for (i=0; i < length; i++)
|
|
{
|
|
temp = data[i];
|
|
data[i]=data[length-i-1];
|
|
data[length-i-1]=temp;
|
|
}
|
|
}
|
|
bool BitStream::DoEndianSwap(void)
|
|
{
|
|
#ifndef __BITSTREAM_NATIVE_END
|
|
return IsNetworkOrder()==false;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
bool BitStream::IsBigEndian(void)
|
|
{
|
|
return IsNetworkOrder();
|
|
}
|
|
bool BitStream::IsNetworkOrder(void)
|
|
{
|
|
static bool isNetworkOrder=(htonl(12345) == 12345);
|
|
return isNetworkOrder;
|
|
}
|
|
void BitStream::WriteNormVector( float x, float y, float z ){
|
|
#ifdef _DEBUG
|
|
assert(x <= 1.01 && y <= 1.01 && z <= 1.01 && x >= -1.01 && y >= -1.01 && z >= -1.01);
|
|
#endif
|
|
if (x>1.0)
|
|
x=1.0;
|
|
if (y>1.0)
|
|
y=1.0;
|
|
if (z>1.0)
|
|
z=1.0;
|
|
if (x<-1.0)
|
|
x=-1.0;
|
|
if (y<-1.0)
|
|
y=-1.0;
|
|
if (z<-1.0)
|
|
z=-1.0;
|
|
|
|
Write((bool) (x < 0.0));
|
|
if (y==0.0)
|
|
Write(true);
|
|
else
|
|
{
|
|
Write(false);
|
|
WriteCompressed((float)y);
|
|
//Write((unsigned short)((y+1.0f)*32767.5f));
|
|
}
|
|
if (z==0.0)
|
|
Write(true);
|
|
else
|
|
{
|
|
Write(false);
|
|
WriteCompressed((float)z);
|
|
//Write((unsigned short)((z+1.0f)*32767.5f));
|
|
}
|
|
}
|
|
void BitStream::WriteVector( float x, float y, float z )
|
|
{
|
|
float magnitude = sqrt(x * x + y * y + z * z);
|
|
Write((float)magnitude);
|
|
if (magnitude > 0.0)
|
|
{
|
|
WriteCompressed((float)(x/magnitude));
|
|
WriteCompressed((float)(y/magnitude));
|
|
WriteCompressed((float)(z/magnitude));
|
|
}
|
|
}
|
|
void BitStream::WriteNormQuat( float w, float x, float y, float z){
|
|
Write((bool)(w<0.0));
|
|
Write((bool)(x<0.0));
|
|
Write((bool)(y<0.0));
|
|
Write((bool)(z<0.0));
|
|
Write((unsigned short)(fabs(x)*65535.0));
|
|
Write((unsigned short)(fabs(y)*65535.0));
|
|
Write((unsigned short)(fabs(z)*65535.0));
|
|
// Leave out w and calculate it on the target
|
|
}
|
|
void BitStream::WriteOrthMatrix(
|
|
double m00, double m01, double m02,
|
|
double m10, double m11, double m12,
|
|
double m20, double m21, double m22 ){
|
|
double qw;
|
|
double qx;
|
|
double qy;
|
|
double qz;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4100) // m10, m01 : unreferenced formal parameter
|
|
#endif
|
|
|
|
// Convert matrix to quat
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
|
|
double sum;
|
|
sum = 1 + m00 + m11 + m22;
|
|
if (sum < 0.0f) sum=0.0f;
|
|
qw = sqrt( sum ) / 2;
|
|
sum = 1 + m00 - m11 - m22;
|
|
if (sum < 0.0f) sum=0.0f;
|
|
qx = sqrt( sum ) / 2;
|
|
sum = 1 - m00 + m11 - m22;
|
|
if (sum < 0.0f) sum=0.0f;
|
|
qy = sqrt( sum ) / 2;
|
|
sum = 1 - m00 - m11 + m22;
|
|
if (sum < 0.0f) sum=0.0f;
|
|
qz = sqrt( sum ) / 2;
|
|
if (qw < 0.0) qw=0.0;
|
|
if (qx < 0.0) qx=0.0;
|
|
if (qy < 0.0) qy=0.0;
|
|
if (qz < 0.0) qz=0.0;
|
|
qx = _copysign( qx, m21 - m12 );
|
|
qy = _copysign( qy, m02 - m20 );
|
|
qz = _copysign( qz, m10 - m01 );
|
|
|
|
WriteNormQuat(qw,qx,qy,qz);
|
|
}
|
|
bool BitStream::ReadNormVector( float &x, float &y, float &z ){
|
|
// unsigned short sy, sz;
|
|
bool yZero, zZero;
|
|
bool xNeg;
|
|
float cy,cz;
|
|
|
|
Read(xNeg);
|
|
|
|
Read(yZero);
|
|
if (yZero)
|
|
y=0.0;
|
|
else
|
|
{
|
|
ReadCompressed(cy);
|
|
y=cy;
|
|
//Read(sy);
|
|
//y=((float)sy / 32767.5f - 1.0f);
|
|
}
|
|
|
|
if (!Read(zZero))
|
|
return false;
|
|
|
|
if (zZero)
|
|
z=0.0;
|
|
else
|
|
{
|
|
// if (!Read(sz))
|
|
// return false;
|
|
|
|
// z=((float)sz / 32767.5f - 1.0f);
|
|
if (!ReadCompressed(cz))
|
|
return false;
|
|
z=cz;
|
|
}
|
|
|
|
x = float (sqrtf((float)1.0 - y*y - z*z));
|
|
if (xNeg)
|
|
x=-x;
|
|
return true;
|
|
}
|
|
bool BitStream::ReadVector( float x, float y, float z ){
|
|
float magnitude;
|
|
if (!Read(magnitude))
|
|
return false;
|
|
if (magnitude!=0.0)
|
|
{
|
|
float cx,cy,cz;
|
|
ReadCompressed(cx);
|
|
ReadCompressed(cy);
|
|
if (!ReadCompressed(cz))
|
|
return false;
|
|
x=cx;
|
|
y=cy;
|
|
z=cz;
|
|
x*=magnitude;
|
|
y*=magnitude;
|
|
z*=magnitude;
|
|
}
|
|
else
|
|
{
|
|
x=0.0;
|
|
y=0.0;
|
|
z=0.0;
|
|
}
|
|
return true;
|
|
}
|
|
bool BitStream::ReadNormQuat( double &w, double &x, double &y, double &z){
|
|
bool cwNeg, cxNeg, cyNeg, czNeg;
|
|
unsigned short cx,cy,cz;
|
|
Read(cwNeg);
|
|
Read(cxNeg);
|
|
Read(cyNeg);
|
|
Read(czNeg);
|
|
Read(cx);
|
|
Read(cy);
|
|
if (!Read(cz))
|
|
return false;
|
|
|
|
// Calculate w from x,y,z
|
|
x=(double)(cx/65535.0);
|
|
y=(double)(cy/65535.0);
|
|
z=(double)(cz/65535.0);
|
|
if (cxNeg) x=-x;
|
|
if (cyNeg) y=-y;
|
|
if (czNeg) z=-z;
|
|
double difference = 1.0 - x*x - y*y - z*z;
|
|
if (difference < 0.0f)
|
|
difference=0.0f;
|
|
w = (double)(sqrt(difference));
|
|
if (cwNeg)
|
|
w=-w;
|
|
return true;
|
|
}
|
|
bool BitStream::ReadOrthMatrix(
|
|
float &m00, float &m01, float &m02,
|
|
float &m10, float &m11, float &m12,
|
|
float &m20, float &m21, float &m22 )
|
|
{
|
|
double _m00, _m01, _m02, _m10, _m11, _m12, _m20, _m21, _m22;
|
|
bool b=ReadOrthMatrix(
|
|
_m00, _m01, _m02,
|
|
_m10, _m11, _m12,
|
|
_m20, _m21, _m22);
|
|
m00=(float)_m00; m01=(float)_m01; m02=(float)_m02;
|
|
m10=(float)_m10; m11=(float)_m11; m12=(float)_m12;
|
|
m20=(float)_m20; m21=(float)_m21; m22=(float)_m22;
|
|
return b;
|
|
}
|
|
bool BitStream::ReadOrthMatrix(
|
|
double &m00, double &m01, double &m02,
|
|
double &m10, double &m11, double &m12,
|
|
double &m20, double &m21, double &m22 ){
|
|
float qw,qx,qy,qz;
|
|
if (!ReadNormQuat(qw,qx,qy,qz))
|
|
return false;
|
|
|
|
// Quat to orthogonal rotation matrix
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
|
|
double sqw = (double)qw*(double)qw;
|
|
double sqx = (double)qx*(double)qx;
|
|
double sqy = (double)qy*(double)qy;
|
|
double sqz = (double)qz*(double)qz;
|
|
m00 = (sqx - sqy - sqz + sqw); // since sqw + sqx + sqy + sqz =1
|
|
m11 = (-sqx + sqy - sqz + sqw);
|
|
m22 = (-sqx - sqy + sqz + sqw);
|
|
|
|
double tmp1 = (double)qx*(double)qy;
|
|
double tmp2 = (double)qz*(double)qw;
|
|
m10 = (2.0 * (tmp1 + tmp2));
|
|
m01 = (2.0 * (tmp1 - tmp2));
|
|
|
|
tmp1 = (double)qx*(double)qz;
|
|
tmp2 = (double)qy*(double)qw;
|
|
m20 = (2.0 * (tmp1 - tmp2));
|
|
m02 = (2.0 * (tmp1 + tmp2));
|
|
tmp1 = (double)qy*(double)qz;
|
|
tmp2 = (double)qx*(double)qw;
|
|
m21 = (2.0 * (tmp1 + tmp2));
|
|
m12 = (2.0 * (tmp1 - tmp2));
|
|
|
|
return true;
|
|
}
|
|
#ifdef _MSC_VER
|
|
#pragma warning( pop )
|
|
#endif
|
|
|
|
#endif
|