DarkflameServer/dCommon/AMFDeserialize.cpp
jadebenn 53877a0bc3
refactor: Rewrite AMF and property behavior logic to use smart pointers, references, and string_views over raw pointers and std::string& ()
* Rewrite AMF and behavior logic to use smart pointers, references, and string_views over raw pointers and std::string&

* fix m_BehaviorID initialization

* Fix BlockDefinition member naming

* remove redundant reset()s

* Replace UB forward template declarations with header include

* remove unneeded comment

* remove non-const ref getters

* simplify default behavior id initialization

* Fix invalidated use of Getter to set a value

* Update AddStripMessage.cpp - change push_back to emplace_back

* fix pointer to ref conversion mistake (should not have directly grabbed from the other branch commit)

* deref

* VERY experimental testing of forward declaration of templates - probably will revert

* Revert changes (as expected)

* Update BlockDefinition.h - remove extraneous semicolons

* Update BlockDefinition.h - remove linebreak

* Update Amf3.h member naming scheme

* fix duplicated code

* const iterators

* const pointers

* reviving this branch

* update read switch cases
2024-11-18 20:45:24 -06:00

134 lines
4.0 KiB
C++

#include "AMFDeserialize.h"
#include <stdexcept>
#include "Amf3.h"
/**
* AMF3 Reference document https://rtmp.veriskope.com/pdf/amf3-file-format-spec.pdf
* AMF3 Deserializer written by EmosewaMC
*/
std::unique_ptr<AMFBaseValue> AMFDeserialize::Read(RakNet::BitStream& inStream) {
// Read in the value type from the bitStream
eAmf marker;
inStream.Read(marker);
// Based on the typing, create the value associated with that and return the base value class
switch (marker) {
case eAmf::Undefined:
return std::make_unique<AMFBaseValue>();
case eAmf::Null:
return std::make_unique<AMFNullValue>();
case eAmf::False:
return std::make_unique<AMFBoolValue>(false);
case eAmf::True:
return std::make_unique<AMFBoolValue>(true);
case eAmf::Integer:
return ReadAmfInteger(inStream);
case eAmf::Double:
return ReadAmfDouble(inStream);
case eAmf::String:
return ReadAmfString(inStream);
case eAmf::Array:
return ReadAmfArray(inStream);
// These values are unimplemented in the live client and will remain unimplemented
// unless someone modifies the client to allow serializing of these values.
case eAmf::XMLDoc:
[[fallthrough]];
case eAmf::Date:
[[fallthrough]];
case eAmf::Object:
[[fallthrough]];
case eAmf::XML:
[[fallthrough]];
case eAmf::ByteArray:
[[fallthrough]];
case eAmf::VectorInt:
[[fallthrough]];
case eAmf::VectorUInt:
[[fallthrough]];
case eAmf::VectorDouble:
[[fallthrough]];
case eAmf::VectorObject:
[[fallthrough]];
case eAmf::Dictionary:
throw marker;
default:
throw std::invalid_argument("Invalid AMF3 marker" + std::to_string(static_cast<int32_t>(marker)));
}
}
uint32_t AMFDeserialize::ReadU29(RakNet::BitStream& inStream) {
bool byteFlag = true;
uint32_t actualNumber{};
uint8_t numberOfBytesRead{};
while (byteFlag && numberOfBytesRead < 4) {
uint8_t byte{};
inStream.Read(byte);
// Parse the byte
if (numberOfBytesRead < 3) {
byteFlag = byte & static_cast<uint8_t>(1 << 7);
byte = byte << 1UL;
}
// Combine the read byte with our current read in number
actualNumber <<= 8UL;
actualNumber |= static_cast<uint32_t>(byte);
// If we are not done reading in bytes, shift right 1 bit
if (numberOfBytesRead < 3) actualNumber = actualNumber >> 1UL;
numberOfBytesRead++;
}
return actualNumber;
}
const std::string AMFDeserialize::ReadString(RakNet::BitStream& inStream) {
auto length = ReadU29(inStream);
// Check if this is a reference
bool isReference = length % 2 == 1;
// Right shift by 1 bit to get index if reference or size of next string if value
length = length >> 1;
if (isReference) {
std::string value(length, 0);
inStream.Read(&value[0], length);
// Empty strings are never sent by reference
if (!value.empty()) accessedElements.push_back(value);
return value;
} else {
// Length is a reference to a previous index - use that as the read in value
return accessedElements.at(length);
}
}
std::unique_ptr<AMFDoubleValue> AMFDeserialize::ReadAmfDouble(RakNet::BitStream& inStream) {
double value;
inStream.Read<double>(value);
return std::make_unique<AMFDoubleValue>(value);
}
std::unique_ptr<AMFArrayValue> AMFDeserialize::ReadAmfArray(RakNet::BitStream& inStream) {
auto arrayValue = std::make_unique<AMFArrayValue>();
// Read size of dense array
const auto sizeOfDenseArray = (ReadU29(inStream) >> 1);
// Then read associative portion
while (true) {
const auto key = ReadString(inStream);
// No more associative values when we encounter an empty string key
if (key.size() == 0) break;
arrayValue->Insert(key, Read(inStream));
}
// Finally read dense portion
for (uint32_t i = 0; i < sizeOfDenseArray; i++) {
arrayValue->Insert(i, Read(inStream));
}
return arrayValue;
}
std::unique_ptr<AMFStringValue> AMFDeserialize::ReadAmfString(RakNet::BitStream& inStream) {
return std::make_unique<AMFStringValue>(ReadString(inStream));
}
std::unique_ptr<AMFIntValue> AMFDeserialize::ReadAmfInteger(RakNet::BitStream& inStream) {
return std::make_unique<AMFIntValue>(ReadU29(inStream)); // NOTE: NARROWING CONVERSION FROM UINT TO INT. IS THIS INTENDED?
}