DarkflameServer/dGame/dComponents/MovementAIComponent.cpp
2023-04-10 22:19:41 -05:00

625 lines
16 KiB
C++

#include "MovementAIComponent.h"
#include <utility>
#include <cmath>
#include "ControllablePhysicsComponent.h"
#include "BaseCombatAIComponent.h"
#include "dpCommon.h"
#include "dpWorld.h"
#include "EntityManager.h"
#include "SimplePhysicsComponent.h"
#include "dZoneManager.h"
#include "CDClientManager.h"
#include "CDComponentsRegistryTable.h"
#include "CDPhysicsComponentTable.h"
std::map<LOT, float> MovementAIComponent::m_PhysicsSpeedCache = {};
MovementAIComponent::MovementAIComponent(Entity* parent, MovementAIInfo info) : Component(parent) {
m_Info = std::move(info);
m_Done = false;
m_BaseCombatAI = nullptr;
m_BaseCombatAI = reinterpret_cast<BaseCombatAIComponent*>(m_Parent->GetComponent(eReplicaComponentType::BASE_COMBAT_AI));
//Try and fix the insane values:
if (m_Info.wanderRadius > 5.0f) m_Info.wanderRadius = m_Info.wanderRadius * 0.5f;
if (m_Info.wanderRadius > 8.0f) m_Info.wanderRadius = 8.0f;
if (m_Info.wanderSpeed > 0.5f) m_Info.wanderSpeed = m_Info.wanderSpeed * 0.5f;
m_BaseSpeed = GetBaseSpeed(m_Parent->GetLOT());
m_NextWaypoint = GetCurrentPosition();
m_Acceleration = 0.4f;
m_Interrupted = false;
m_PullPoint = {};
m_HaltDistance = 0;
m_CurrentSpeed = 0;
m_Speed = 0;
m_WaypointPathSpeed = 1.0f;
m_TotalTime = 0;
m_Timer = 0;
m_LockRotation = false;
m_WaypointPathIndex = parent->GetVarAs<int>(u"attached_path_start");
m_NavPathIndex = 0;
}
MovementAIComponent::~MovementAIComponent() = default;
void MovementAIComponent::Update(const float deltaTime) {
// pull to point update take priority
if (m_Interrupted) {
const auto source = GetCurrentPosition();
const auto speed = deltaTime * 2.5f;
NiPoint3 velocity;
velocity.x = (m_PullPoint.x - source.x) * speed;
velocity.y = (m_PullPoint.y - source.y) * speed;
velocity.z = (m_PullPoint.z - source.z) * speed;
SetPosition(source + velocity);
if (Vector3::DistanceSquared(GetCurrentPosition(), m_PullPoint) < 2 * 2) {
m_Interrupted = false;
}
return;
}
// Navmesh pathing logic
if (!m_Queue.empty()) {
PullToPoint(m_Queue.top());
m_Queue.pop();
return;
}
// waypoint pathing logic
if (m_CurrentPath){
if (!m_Done && !m_Waiting){
if (m_CurrentPath->pathWaypoints.size() > m_WaypointPathIndex) {
auto speed = m_BaseSpeed * m_PathSpeed;
auto source = m_Parent->GetPosition();
auto dest = m_CurrentPath->pathWaypoints.at(m_WaypointPathIndex).position;
// TODO: do this better and more sanely
auto hasNavMesh = dpWorld::Instance().IsLoaded();
if (hasNavMesh) dest.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(dest);
if (abs(dest.y - source.y) > 10) dest.y = source.y; // hacky way to not glitch with weird heights without nav meshes
// if we are close enough to the destination waypoint
if (Vector3::DistanceSquared(source, dest) < 2 * 2) {
if (!AdvancePathWaypointIndex()) return;
}
const auto delta = dest - source;
const auto length = sqrtf(delta.x * delta.x + delta.y * delta.y + delta.z * delta.z);
NiPoint3 velocity;
if (length > 0) {
velocity.x = (delta.x / length) * m_BaseSpeed;
velocity.y = (delta.y / length) * m_BaseSpeed;
velocity.z = (delta.z / length) * m_BaseSpeed;
}
NiPoint3 velocity_pos;
if (length > 0) {
velocity_pos.x = (delta.x / length) * speed * deltaTime;
velocity_pos.y = (delta.y / length) * speed * deltaTime;
velocity_pos.z = (delta.z / length) * speed * deltaTime;
}
// Game::logger->Log("ControllablePhysicsComponent", "v.x %f v.y %f v.z %f", velocity.x, velocity.y, velocity.z);
SetRotation(NiQuaternion::LookAt(source, dest));
SetVelocity(velocity);
SetPosition(source + velocity_pos);
EntityManager::Instance()->SerializeEntity(m_Parent);
}
} else if (!m_Done && m_Waiting) { // waiting, meaing we are at a waypoint, and we want to do something
// handle waiting
if (m_WaitingTime > 0) {
m_WaitingTime = m_WaitingTime - deltaTime;
} else if (m_WaitingTime < 0){
m_Waiting = false;
m_WaitingTime = 0;
// end handle waiting
} else if (m_CurrentPath->pathWaypoints.size() > m_WaypointPathIndex) ArrivedAtPathWaypoint();
}
}
}
// if (m_HaltDistance > 0) {
// if (Vector3::DistanceSquared(ApproximateLocation(), GetDestination()) < m_HaltDistance * m_HaltDistance) // Prevent us from hugging the target
// {
// Stop();
// return;
// }
// }
// if (m_Timer > 0) {
// m_Timer -= deltaTime;
// if (m_Timer > 0) {
// return;
// }
// m_Timer = 0;
// }
// const auto source = GetCurrentWaypoint();
// SetPosition(source);
// NiPoint3 velocity = NiPoint3::ZERO;
// if (AdvanceWaypointIndex()) // Do we have another waypoint to seek?
// {
// m_NextWaypoint = GetCurrentWaypoint();
// if (m_NextWaypoint == source) {
// m_Timer = 0;
// goto nextAction;
// }
// if (m_CurrentSpeed < m_Speed) {
// m_CurrentSpeed += m_Acceleration;
// }
// if (m_CurrentSpeed > m_Speed) {
// m_CurrentSpeed = m_Speed;
// }
// const auto speed = m_CurrentSpeed * m_BaseSpeed;
// const auto delta = m_NextWaypoint - source;
// // Normalize the vector
// const auto length = sqrtf(delta.x * delta.x + delta.y * delta.y + delta.z * delta.z);
// if (length > 0) {
// velocity.x = (delta.x / length) * speed;
// velocity.y = (delta.y / length) * speed;
// velocity.z = (delta.z / length) * speed;
// }
// // Calclute the time it will take to reach the next waypoint with the current speed
// m_TotalTime = m_Timer = length / speed;
// SetRotation(NiQuaternion::LookAt(source, m_NextWaypoint));
// } else {
// // Check if there are more waypoints in the queue, if so set our next destination to the next waypoint
// if (!m_Queue.empty()) {
// SetDestination(m_Queue.top());
// m_Queue.pop();
// } else {
// // We have reached our final waypoint
// Stop();
// return;
// }
// }
// nextAction:
// SetVelocity(velocity);
// EntityManager::Instance()->SerializeEntity(m_Parent);
const MovementAIInfo& MovementAIComponent::GetInfo() const {
return m_Info;
}
void MovementAIComponent::ArrivedAtPathWaypoint(){
// TODO: Call scripts here
PathWaypoint waypoint = m_CurrentPath->pathWaypoints.at(m_WaypointPathIndex);
if (waypoint.config.size() > 0) {
for (LDFBaseData* action : waypoint.config) {
if (action) {
// delay: has time as float
if (action->GetKey() == u"delay"){
m_WaitingTime += std::stof(action->GetValueAsString());
SetVelocity(NiPoint3::ZERO);
EntityManager::Instance()->SerializeEntity(m_Parent);
// emote: has name of animation to play
} else if (action->GetKey() == u"emote"){
GameMessages::SendPlayAnimation(m_Parent, GeneralUtils::UTF8ToUTF16(action->GetValueAsString()));
// TODO Get proper animation time and add to wait
m_WaitingTime += 1;
SetVelocity(NiPoint3::ZERO);
EntityManager::Instance()->SerializeEntity(m_Parent);
// pathspeed: has pathing speed as a float
} else if (action->GetKey() == u"pathspeed") {
m_PathSpeed = std::stof(action->GetValueAsString());
// changeWP: <path to change to>,<waypoint to use> the command and waypoint are optional
} else if (action->GetKey() == u"changeWP") {
// use an intermediate value since it can be one or two things
auto intermed = action->GetValueAsString();
std::string path_string = "";
// sometimes there's a path and what waypoint to start, which are comma separated
if (intermed.find(",") != std::string::npos){
auto datas = GeneralUtils::SplitString(intermed, ',');
path_string = datas[0];
m_WaypointPathIndex = stoi(datas[1]) - 1; // becuase 0 vs 1 indexed
} else {
path_string = intermed;
m_WaypointPathIndex = 0;
}
if (path_string != "") {
m_CurrentPath = const_cast<Path*>(dZoneManager::Instance()->GetZone()->GetPath(path_string));
} else m_CurrentPath = nullptr;
} else {
// We don't recognize the action, let a dev know
Game::logger->LogDebug("ControllablePhysicsComponent", "Unhandled action %s", GeneralUtils::UTF16ToWTF8(action->GetKey()).c_str());
}
}
}
}
if (m_WaitingTime == 0) { // if we don't have any time to wait
m_Waiting = false;
}
}
bool MovementAIComponent::AdvancePathWaypointIndex() {
if (m_CurrentPath->pathBehavior == PathBehavior::Loop) {
if (m_CurrentPath->pathWaypoints.size() < m_WaypointPathIndex + 1) {
// If we reach the end, go back to the starting index since the path is a loop
m_WaypointPathIndex = 0;
} else m_WaypointPathIndex++; // Otherwise continue
} else if (m_CurrentPath->pathBehavior == PathBehavior::Bounce){ // Ping Pong
// Are we going in reverse already?
if (m_Reverse){ // Then we're subtracting
if (m_WaypointPathIndex - 1 < 0){ // Stop reversing if we are at the beginning
m_Reverse = false;
m_WaypointPathIndex++;
} else m_WaypointPathIndex--; // Otherwise continue reverseing
} else { // Then we're adding
if (m_CurrentPath->pathWaypoints.size() < m_WaypointPathIndex + 1){ // Start reversing if we are at the end
m_Reverse = true;
m_WaypointPathIndex--;
} else m_WaypointPathIndex++; // Otherwise continue going up
}
} else if (m_CurrentPath->pathBehavior == PathBehavior::Once){
if (m_CurrentPath->pathWaypoints.size() < m_WaypointPathIndex + 1) {
m_CurrentPath = nullptr; // If we reach the end, we don't continue
return false;
} else m_WaypointPathIndex++; // Otherwise continue
}
m_Waiting = true;
return true;
}
bool MovementAIComponent::AdvanceNavWaypointIndex() {
}
NiPoint3 MovementAIComponent::GetCurrentWaypoint() const {
if (m_PathIndex >= m_CurrentPath->pathWaypoints.size()) {
return GetCurrentPosition();
}
return m_CurrentPath->pathWaypoints[m_PathIndex].position;
}
NiPoint3 MovementAIComponent::GetNextWaypoint() const {
return m_NextWaypoint;
}
NiPoint3 MovementAIComponent::GetCurrentPosition() const {
return m_Parent->GetPosition();
}
// get's the approximate location where the entity should be on the path
NiPoint3 MovementAIComponent::ApproximateLocation() const {
auto source = GetCurrentPosition();
if (m_Done) {
return source;
}
auto destination = m_NextWaypoint;
auto factor = m_TotalTime > 0 ? (m_TotalTime - m_Timer) / m_TotalTime : 0;
auto x = source.x + factor * (destination.x - source.x);
auto y = source.y + factor * (destination.y - source.y);
auto z = source.z + factor * (destination.z - source.z);
NiPoint3 approximation = NiPoint3(x, y, z);
if (dpWorld::Instance().IsLoaded()) {
approximation.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(approximation);
}
return approximation;
}
bool MovementAIComponent::Warp(const NiPoint3& point) {
Stop();
NiPoint3 destination = point;
if (dpWorld::Instance().IsLoaded()) {
destination.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point);
if (std::abs(destination.y - point.y) > 3) {
return false;
}
}
SetPosition(destination);
EntityManager::Instance()->SerializeEntity(m_Parent);
return true;
}
float MovementAIComponent::GetTimer() const {
return m_Timer;
}
bool MovementAIComponent::AtFinalWaypoint() const {
return m_Done;
}
void MovementAIComponent::Stop() {
if (m_Done) {
return;
}
// SetPosition(ApproximateLocation());
SetPosition(GetCurrentPosition());
SetVelocity(NiPoint3::ZERO);
m_TotalTime = m_Timer = 0;
m_Done = true;
m_CurrentSpeed = 0;
EntityManager::Instance()->SerializeEntity(m_Parent);
}
void MovementAIComponent::PullToPoint(const NiPoint3& point) {
Stop();
m_Interrupted = true;
m_PullPoint = point;
}
float MovementAIComponent::GetBaseSpeed(LOT lot) {
// Check if the lot is in the cache
const auto& it = m_PhysicsSpeedCache.find(lot);
if (it != m_PhysicsSpeedCache.end()) {
return it->second;
}
CDComponentsRegistryTable* componentRegistryTable = CDClientManager::Instance().GetTable<CDComponentsRegistryTable>();
CDPhysicsComponentTable* physicsComponentTable = CDClientManager::Instance().GetTable<CDPhysicsComponentTable>();
int32_t componentID;
CDPhysicsComponent* physicsComponent = nullptr;
componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::CONTROLLABLE_PHYSICS, -1);
if (componentID != -1) {
physicsComponent = physicsComponentTable->GetByID(componentID);
goto foundComponent;
}
componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::SIMPLE_PHYSICS, -1);
if (componentID != -1) {
physicsComponent = physicsComponentTable->GetByID(componentID);
goto foundComponent;
}
foundComponent:
float speed;
if (physicsComponent == nullptr) {
speed = 8;
} else {
speed = physicsComponent->speed;
}
m_PhysicsSpeedCache[lot] = speed;
return speed;
}
void MovementAIComponent::SetPosition(const NiPoint3& value) {
auto* controllablePhysicsComponent = m_Parent->GetComponent<ControllablePhysicsComponent>();
if (controllablePhysicsComponent != nullptr) {
controllablePhysicsComponent->SetPosition(value);
return;
}
auto* simplePhysicsComponent = m_Parent->GetComponent<SimplePhysicsComponent>();
if (simplePhysicsComponent != nullptr) {
simplePhysicsComponent->SetPosition(value);
}
}
void MovementAIComponent::SetRotation(const NiQuaternion& value) {
if (m_LockRotation) {
return;
}
auto* controllablePhysicsComponent = m_Parent->GetComponent<ControllablePhysicsComponent>();
if (controllablePhysicsComponent != nullptr) {
controllablePhysicsComponent->SetRotation(value);
return;
}
auto* simplePhysicsComponent = m_Parent->GetComponent<SimplePhysicsComponent>();
if (simplePhysicsComponent != nullptr) {
simplePhysicsComponent->SetRotation(value);
}
}
void MovementAIComponent::SetVelocity(const NiPoint3& value) {
auto* controllablePhysicsComponent = m_Parent->GetComponent<ControllablePhysicsComponent>();
if (controllablePhysicsComponent != nullptr) {
controllablePhysicsComponent->SetVelocity(value);
return;
}
auto* simplePhysicsComponent = m_Parent->GetComponent<SimplePhysicsComponent>();
if (simplePhysicsComponent != nullptr) {
simplePhysicsComponent->SetVelocity(value);
}
}
void MovementAIComponent::SetDestination(const NiPoint3& value) {
if (m_Interrupted) {
return;
}
/*if (Vector3::DistanceSquared(value, GetDestination()) < 2 * 2)
{
return;
}*/
const auto location = ApproximateLocation();
if (!AtFinalWaypoint()) {
SetPosition(location);
}
std::vector<NiPoint3> computedPath;
if (dpWorld::Instance().IsLoaded()) {
computedPath = dpWorld::Instance().GetNavMesh()->GetPath(GetCurrentPosition(), value, m_Info.wanderSpeed);
} else {
// Than take 10 points between the current position and the destination and make that the path
auto point = location;
auto delta = value - point;
auto step = delta / 10;
for (int i = 0; i < 10; i++) {
point = point + step;
computedPath.push_back(point);
}
}
if (computedPath.empty()) // Somehow failed
{
return;
}
m_Queue.push(location);
// Simply path
for (auto point : computedPath) {
if (dpWorld::Instance().IsLoaded()) {
point.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point);
}
m_Queue.push(point);
}
m_Queue.push(computedPath[computedPath.size() - 1]);
m_PathIndex = 0;
m_TotalTime = m_Timer = 0;
m_Done = false;
}
NiPoint3 MovementAIComponent::GetDestination() const {
if (!m_CurrentPath) {
return GetCurrentPosition();
}
return m_CurrentPath->pathWaypoints[m_CurrentPath->pathWaypoints.size() - 1].position;
}
void MovementAIComponent::SetSpeed(const float value) {
m_Speed = value;
m_Acceleration = value / 5;
}
float MovementAIComponent::GetSpeed() const {
return m_Speed;
}
void MovementAIComponent::SetAcceleration(const float value) {
m_Acceleration = value;
}
float MovementAIComponent::GetAcceleration() const {
return m_Acceleration;
}
void MovementAIComponent::SetHaltDistance(const float value) {
m_HaltDistance = value;
}
float MovementAIComponent::GetHaltDistance() const {
return m_HaltDistance;
}
void MovementAIComponent::SetCurrentSpeed(float value) {
m_CurrentSpeed = value;
}
float MovementAIComponent::GetCurrentSpeed() const {
return m_CurrentSpeed;
}
void MovementAIComponent::SetLockRotation(bool value) {
m_LockRotation = value;
}
bool MovementAIComponent::GetLockRotation() const {
return m_LockRotation;
}