DarkflameServer/thirdparty/raknet/Source/Gen_RPC8.h
2021-12-05 18:54:36 +01:00

1023 lines
38 KiB
C++

#ifndef __GEN_RPC8_H
#define __GEN_RPC8_H
#include <stdlib.h>
#include <stdio.h>
#include <string.h> // memcpy
#include <typeinfo>
#ifdef _WIN32
#include <windows.h>
#endif
#include <stddef.h>
//#define ASSEMBLY_BLOCK asm
#include "Types.h"
#include "BitStream.h"
// #define AUTO_RPC_NO_ASM
// #define AUTO_RPC_USE_DYNAMIC_CAST 1
#ifdef _WIN64
#define AUTO_RPC_NO_ASM
#endif
#include "NetworkIDObject.h"
namespace GenRPC
{
//#define __BITSTREAM_NATIVE_END 1
// -8<----8<----8<----BEGIN
//
// 0. References
// a. Calling conventions for different C++ compilers and operating systems [http://www.agner.org/optimize]
// b. System V Application Binary Interface AMD64 Architecture Processor Supplement
// Used by 64-bit MAC and 64-bit Linux.
// c. 32-bit PowerPC MAC calling conventions [http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html#//apple_ref/doc/uid/TP40002438-SW20]
// d. 32-bit IA MAC calling conventions [http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/IA32.html#//apple_ref/doc/uid/TP40002492-SW4]
// e. Calling conventions on 64-bit windows [http://msdn2.microsoft.com/en-us/library/zthk2dkh(VS.80).aspx]
// f. 64-bit PowerPC MAC calling conventions [http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/64bitPowerPC.html#//apple_ref/doc/uid/TP40002471]
//
// 1. General Introduction.
//
// Quite a lot of code we write hinges on hidden assumptions. For instance, most code tacitly
// assumes a char is 8 bits, even though it needn't be. And how much code relies on
// two's-a-compliment numbers, by, for example, assuming the only representation of zero
// is all bits clear? Yet this too isn't mandated by the C standard - which allows for non
// two's a compliment numbers.
// And the switch to 64-bit will see us discovering how
// much of our code assumes sizeof(int) == sizeof(long) == sizeof(void*)
//
// These tradeoffs and compromises are made because we know the architectures
// with CHAR_BITS != 8 are embedded systems of FPGAs and we don't extend our definition of
// portability to those systems. Or Windows code can
// assume its running on a little-endian machine, without loss of generality. In fact, it
// often impossible to test our code in situatiosn where assumptions are not true.
//
// The same is true of a lightweight RPC - to be possible at all, it will have make some
// assumptions about the architecture on (like CHAR_BITS == 8) which limit portability, but
// which are not unreasonable for the cases where its expected to run (modern personal computers)
// and hopefully can be extended easily to meet new cases.
//
// 2. Parameter passing - Introduction
//
// The C standard doesn't mandate how parameters are passed from one function to another.
// That's down to the particular archictecture, normally laid out in the Application Binary
// Interface (ABI).
//
// On some architecture (e.g. 32bit X86) the parameters are all passed on the stack;
// on some architectures (e.g. SPARC) there is no stack and they are all passed in register.
// Sometimes the function must be passed the exact number of args it expects (e.g. WIN32
// "stdcall"); somtimes it can take an arbitrary number of args (IA-32/64 linux).
//
// But whatever the case, the compiler knows about all the details - it sorts them out every
// time we write a call. So to make it portable we must ensure we pass the compiler *sufficient*
// information to be able to encode the call, in all the cases we're interested in. To do this
// we need some knowledge of the ABI, without getting our hands dirty writing assembler.
// Not only because we can't all be experts at every particularl architecture with its necessary
// prefetches, conditional moves and innate parralelism, but also because that allows the compiler to
// code for the exact processors - rather than using a lowest-common denominator.
//
//
// 3. Preparing parameters and assumptions
//
// We assume that the processor has a 32 bit or 64 bit "natural word size" - and that the
// registers, stack entries (if a stack exists) and pointers all have this natural word
// size. We further assume (1) parameters smaller than this have to be padded out to meet this
// size, and that (2) this can be done by zero-extended them, regardless of whether they are signed
// or unsigned quanitites.
//
// The SysV ABI for 64bit X86 [b] and that ABI for 64-bit windows [e] require that floating point
// parameters are passed in floating points registers - so to work with these types we need to know
// they are floats and alert the compiler. A similar arrangement is true for both 32-bit and 64-bit
// Power PC systems.
//
// This can extend to structures ("aggregate types") containing floating point numbers - where
// individual members can still be passed in register. (Although
// on 64-bit windows, aggregates of size > 8 bytes are passed on the stack, so,
// except for the pathological case of struct S { double F }; there are no problems with
// structures containing floats.)
//
// ---
//
// AUTO_RPC_MAX_PARAMS: Absolute number of stack words we can handle
// ABI: used to select features specific to ABI.
// AUTO_RPC_INT_REG_PARAMS: Number of parameters passed in integer registers. (Only used by SYSV ABI)
// AUTO_RPC_FLOAT_REG_PARAMS: Number of parameters passed in floating point registers.
// AUTO_RPC_INT_SHADOW_OF_FLOATS: Create a copy of the floats in the integer/stack space.
// AUTO_RPC_ALLOC_SEPARATE_FLOATS: Push floats to a separate contiguous floating point "stack".
// Ortherwise we rely on shadow.
//
// PARAMETER_REF_THRESHOLD: parameters bigger than this are replaced by a reference ( WIN64 )
//
//
#define AUTO_RPC_MAX_PARAMS 64
#define AUTO_RPC_ABI_NONE 0 // not supported - should fail.
#define AUTO_RPC_ABI_IA_32 1 // all parameters are passed on the stack.
// preserves: ebx,esi,edi,ebp
#define AUTO_RPC_ABI_WIN_AMD64 2 // first four parameters in either
// rcx|xmm0, rdx|xmm1,r8|xmm2,r9|xmm3
// preserves: rbx,rsi,rdi,rbp,r12-r15; xmm6-xmm15
// comments: aggregates > 8 passed by ref; reg params shadowed on stack
#define AUTO_RPC_ABI_SYSV_AMD64 3 // first six ints in: rdi,rsi,rdx,rcx,r8,r9
// first eight reals: in xmm0...xmm7
// preserves: rbx,rbp,r12-r15
// comments: aggregates > 16 bumped to stack
#define AUTO_RPC_ABI_PPC 4 // first 6 args (even if float) in int reg; first 13 floats in reg.
// parameter passing area with shadow area.
// Configure the parameters for the system.
#if defined(__i386__) || defined( _M_IX86 ) || defined( __INTEL__ )
// 32 bit system.
#define AUTO_RPC_AUTORPC_WORD 32
typedef unsigned int NaturalWord;
typedef double HardwareReal;
#define AUTO_RPC_INT_REG_PARAMS 0
#define AUTO_RPC_FLOAT_REG_PARAMS 0
#define AUTO_RPC_ABI AUTO_RPC_ABI_IA_32
#define AUTO_RPC_PARAMETER_REFERENCE_THRESHOLD 0
#define AUTO_RPC_INT_SHADOW_OF_FLOATS 1
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 0
#define AUTO_RPC_CREATE_FLOAT_MAP 0
#elif defined( _M_X64 ) || defined( __x86_64__ ) || defined( _M_AMD64 )
#define AUTO_RPC_AUTORPC_WORD 64
#if defined( _WIN64 )
#define AUTO_RPC_FLOAT_REG_PARAMS 4
#define AUTO_RPC_INT_REG_PARAMS 4
#define AUTO_RPC_ABI AUTO_RPC_ABI_WIN_AMD64
#define AUTO_RPC_PARAMETER_REFERENCE_THRESHOLD 8
#define AUTO_RPC_INT_SHADOW_OF_FLOATS 1
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 0
#define AUTO_RPC_CREATE_FLOAT_MAP 1
#else
#define AUTO_RPC_ABI AUTO_RPC_ABI_SYSV_AMD64
#define AUTO_RPC_INT_REG_PARAMS 6
#define AUTO_RPC_FLOAT_REG_PARAMS 8
#define AUTO_RPC_PARAMETER_REFERENCE_THRESHOLD 0
#define AUTO_RPC_INT_SHADOW_OF_FLOATS 0
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 1
#define AUTO_RPC_CREATE_FLOAT_MAP 0
#endif
// NB OS's differ over.
typedef unsigned long long NaturalWord;
typedef double HardwareReal; // could be changed to __float128 on AMD64/nonwin
#elif defined ( _PS3 )
typedef double HardwareReal;
typedef unsigned long long NaturalWord;
#define AUTO_RPC_AUTORPC_WORD 64
#define AUTO_RPC_INT_REG_PARAMS 8
#define AUTO_RPC_FLOAT_REG_PARAMS 13
#define AUTO_RPC_INT_SHADOW_OF_FLOATS 1
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 1
#define AUTO_RPC_CREATE_FLOAT_MAP 0
#define AUTO_RPC_PARAMETER_REFERENCE_THRESHOLD 0
#define AUTO_RPC_ABI AUTO_RPC_ABI_PPC
#elif defined(_M_PPC) || defined( __POWERPC__ )
#include <limits.h>
/// PPC Mac doesn't support sizeof( long ) in an #if statement
#if defined (LONG_BIT)
#if LONG_BIT == 64
#define AUTORPC_WORD 64
typedef double HardwareReal;
typedef unsigned long long NaturalWord;
#else
#define AUTORPC_WORD 32
typedef double HardwareReal;
typedef unsigned int NaturalWord;
#endif
#else
#if sizeof( long ) == 8
#define AUTORPC_WORD 64
typedef double HardwareReal;
typedef unsigned long long NaturalWord;
#else
#define AUTORPC_WORD 32
typedef double HardwareReal;
typedef unsigned int NaturalWord;
#endif
#endif
#define AUTO_RPC_INT_REG_PARAMS 8
#define AUTO_RPC_FLOAT_REG_PARAMS 13
#define AUTO_RPC_INT_SHADOW_OF_FLOATS 1
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 1
#define AUTO_RPC_CREATE_FLOAT_MAP 0
#define AUTO_RPC_PARAMETER_REFERENCE_THRESHOLD 0
#define AUTO_RPC_ABI AUTO_RPC_ABI_PPC
#else
#ifdef __GNUC__
// gcc won't implemented message - so use #warning
#warning Unknown Architecture
#else
#pragma message( Unknown architecture )
#endif
// defining AUTO_RPC_ABI_NONE, creates stub code that fails
#define AUTO_RPC_ABI AUTO_RPC_ABI_NONE
#endif
//
// Calling convention - we need to be explict on WIN32, so we do that here. Everybody else
// has only one fixed, calling convention.
//
#ifdef _WIN32
#define AUTO_RPC_CALLSPEC WINAPIV
#else
#define AUTO_RPC_CALLSPEC
#endif
//
// useful macros; could be rewritten inline/inline templates
//
#define AUTO_RPC__ALIGN_P2( len, bytes ) ( ( len + bytes - 1 ) & ~( bytes - 1 ) )
// Return len rounded-up to an integral number of sizeof(type) - provided sizeof(type) is a power of 2
#define AUTO_RPC_ALIGN_P2( len, type ) AUTO_RPC__ALIGN_P2( len, sizeof( type ) )
// Return ptr to end of 'array[xxx]'
#define AUTO_RPC_ARRAY_END( array ) &array[ sizeof( array ) / sizeof( array[0] ) ]
// strip floating point params if there are no float regs.
#if !AUTO_RPC_FLOAT_REG_PARAMS
#if AUTO_RPC_CREATE_FLOAT_MAP
#undef AUTO_RPC_CREATE_FLOAT_MAP
#define AUTO_RPC_CREATE_FLOAT_MAP 0
#endif
#if AUTO_RPC_ALLOC_SEPARATE_FLOATS
#undef AUTO_RPC_ALLOC_SEPARATE_FLOATS
#define AUTO_RPC_ALLOC_SEPARATE_FLOATS 0
#endif
#endif // FLOAT_REG_PARAM
#define AUTO_RPC_REF_ALIGN 16 // some structures must be memory aligned to 16 bytes, even, on 32-bit systems.
// stack simialrly must be aligned
#define AUTO_RPC_STACK_PADDING ( sizeof( NaturalWord ) / AUTO_RPC_REF_ALIGN )
// defining these externally makes the code a hell of a lot more readable.
#ifdef USE_VARADIC_CALL
#define AUTO_RPC_NW_3 ...
#define AUTO_RPC_NW_6 ...
#define AUTO_RPC_NW_9 ...
#define AUTO_RPC_NW_12 ...
#define AUTO_RPC_NW_64 ...
#else
#define AUTO_RPC_NW_3 NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_6 NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_9 NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_5 NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_4_9 AUTO_RPC_NW_5
#define AUTO_RPC_NW_12 NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_32 NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_64 NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_60 NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord,\
NaturalWord,NaturalWord,NaturalWord,NaturalWord
#define AUTO_RPC_NW_4_64 AUTO_RPC_NW_60
#endif // USE VARADIC
#define AUTO_RPC_INT_ARGS_3( call ) call.intParams[0],call.intParams[1],call.intParams[2]
#define AUTO_RPC_INT_ARGS_6( call ) call.intParams[0],call.intParams[1],call.intParams[2],call.intParams[3],\
call.intParams[4],call.intParams[5]
#define AUTO_RPC_INT_ARGS_9( call ) call.intParams[0],call.intParams[1],call.intParams[2],call.intParams[3],\
call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8]
#define AUTO_RPC_INT_ARGS_4_9( call ) call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8]
#define AUTO_RPC_INT_ARGS_12( call ) call.intParams[0],call.intParams[1],call.intParams[2],call.intParams[3],\
call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8],call.intParams[9],call.intParams[10],call.intParams[11]
#define AUTO_RPC_INT_ARGS_32( call ) call.intParams[0],call.intParams[1],call.intParams[2],call.intParams[3],\
call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8],call.intParams[9],call.intParams[10],call.intParams[11],\
call.intParams[12],call.intParams[13],call.intParams[14],call.intParams[15],\
call.intParams[16],call.intParams[17],call.intParams[18],call.intParams[19],\
call.intParams[20],call.intParams[21],call.intParams[22],call.intParams[23],\
call.intParams[24],call.intParams[25],call.intParams[26],call.intParams[27],\
call.intParams[28],call.intParams[29],call.intParams[30],call.intParams[31]
#define AUTO_RPC_INT_ARGS_4_64( call ) call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8],call.intParams[9],call.intParams[10],call.intParams[11],\
call.intParams[12],call.intParams[13],call.intParams[14],call.intParams[15],\
call.intParams[16],call.intParams[17],call.intParams[18],call.intParams[19],\
call.intParams[20],call.intParams[21],call.intParams[22],call.intParams[23],\
call.intParams[24],call.intParams[25],call.intParams[26],call.intParams[27],\
call.intParams[28],call.intParams[29],call.intParams[30],call.intParams[31],\
call.intParams[32],call.intParams[33],call.intParams[34],call.intParams[35],\
call.intParams[36],call.intParams[37],call.intParams[38],call.intParams[39],\
call.intParams[40],call.intParams[41],call.intParams[42],call.intParams[43],\
call.intParams[44],call.intParams[45],call.intParams[46],call.intParams[47],\
call.intParams[48],call.intParams[49],call.intParams[50],call.intParams[51],\
call.intParams[52],call.intParams[53],call.intParams[54],call.intParams[55],\
call.intParams[56],call.intParams[57],call.intParams[58],call.intParams[59],\
call.intParams[60],call.intParams[61],call.intParams[62],call.intParams[63]
#define AUTO_RPC_INT_ARGS_64( call ) call.intParams[0],call.intParams[1],call.intParams[2],call.intParams[3],\
call.intParams[4],call.intParams[5],call.intParams[6],call.intParams[7],\
call.intParams[8],call.intParams[9],call.intParams[10],call.intParams[11],\
call.intParams[12],call.intParams[13],call.intParams[14],call.intParams[15],\
call.intParams[16],call.intParams[17],call.intParams[18],call.intParams[19],\
call.intParams[20],call.intParams[21],call.intParams[22],call.intParams[23],\
call.intParams[24],call.intParams[25],call.intParams[26],call.intParams[27],\
call.intParams[28],call.intParams[29],call.intParams[30],call.intParams[31],\
call.intParams[32],call.intParams[33],call.intParams[34],call.intParams[35],\
call.intParams[36],call.intParams[37],call.intParams[38],call.intParams[39],\
call.intParams[40],call.intParams[41],call.intParams[42],call.intParams[43],\
call.intParams[44],call.intParams[45],call.intParams[46],call.intParams[47],\
call.intParams[48],call.intParams[49],call.intParams[50],call.intParams[51],\
call.intParams[52],call.intParams[53],call.intParams[54],call.intParams[55],\
call.intParams[56],call.intParams[57],call.intParams[58],call.intParams[59],\
call.intParams[60],call.intParams[61],call.intParams[62],call.intParams[63]
#if AUTO_RPC_ALLOC_SEPARATE_FLOATS
#if AUTO_RPC_FLOAT_REG_PARAMS == 8
#define AUTO_RPC_FLOAT_REG_TYPE HardwareReal,HardwareReal,HardwareReal,HardwareReal,\
HardwareReal,HardwareReal,HardwareReal,HardwareReal
#define AUTO_RPC_FLOAT_REG_ARGS( a ) a.realParams[0],a.realParams[1],a.realParams[2],a.realParams[3],\
a.realParams[4],a.realParams[5],a.realParams[6],a.realParams[7]
#elif AUTO_RPC_FLOAT_REG_PARAMS == 4
#define AUTO_RPC_FLOAT_REG_TYPE HardwareReal,HardwareReal,HardwareReal,HardwareReal
#define AUTO_RPC_FLOAT_REG_ARGS( a ) a.realParams[0],a.realParams[1],a.realParams[2],a.realParams[3]
#elif AUTO_RPC_FLOAT_REG_PARAMS == 13
#define AUTO_RPC_FLOAT_REG_TYPE HardwareReal,HardwareReal,HardwareReal,HardwareReal,\
HardwareReal,HardwareReal,HardwareReal,HardwareReal,\
HardwareReal,HardwareReal,HardwareReal,HardwareReal,HardwareReal
#define AUTO_RPC_FLOAT_REG_ARGS( a ) a.realParams[0],a.realParams[1],a.realParams[2],a.realParams[3],\
a.realParams[4],a.realParams[5],a.realParams[6],a.realParams[7],\
a.realParams[8],a.realParams[9],a.realParams[10],a.realParams[11],a.realParams[12]
#elif AUTO_RPC_FLOAT_REG_PARAMS
#error Need FLOAT_REG_TYPE and AUTO_RPC_FLOAT_REG_ARGS setup
#endif
#endif // AUTO_RPC_ALLOC_SEPARATE_FLOATS
/// \internal
/// Writes number of parameters to push on the stack
void SerializeHeader(char *&out, unsigned int numParams);
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
unsigned int BuildStack(char *stack);
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1>
unsigned int BuildStack(char *stack, P1 p1,
bool es1=true)
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 1);
PushHeader(stackPtr, p1, es1);
Push( stackPtr, p1, es1 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2>
unsigned int BuildStack(char *stack, P1 p1, P2 p2,
bool es1=true, bool es2=true)
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 2);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3,
bool es1=true, bool es2=true, bool es3=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 3);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3, class P4>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3, P4 p4,
bool es1=true, bool es2=true, bool es3=true, bool es4=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 4);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
PushHeader(stackPtr, p4, es4);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
Push( stackPtr, p4, es4 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3, class P4, class P5>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3, P4 p4, P5 p5,
bool es1=true, bool es2=true, bool es3=true, bool es4=true, bool es5=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 5);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
PushHeader(stackPtr, p4, es4);
PushHeader(stackPtr, p5, es5);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
Push( stackPtr, p4, es4 );
Push( stackPtr, p5, es5 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3, class P4, class P5, class P6>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6,
bool es1=true, bool es2=true, bool es3=true, bool es4=true, bool es5=true, bool es6=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 6);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
PushHeader(stackPtr, p4, es4);
PushHeader(stackPtr, p5, es5);
PushHeader(stackPtr, p6, es6);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
Push( stackPtr, p4, es4 );
Push( stackPtr, p5, es5 );
Push( stackPtr, p6, es6 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3, class P4, class P5, class P6, class P7>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7,
bool es1=true, bool es2=true, bool es3=true, bool es4=true, bool es5=true, bool es6=true, bool es7=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 7);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
PushHeader(stackPtr, p4, es4);
PushHeader(stackPtr, p5, es5);
PushHeader(stackPtr, p6, es6);
PushHeader(stackPtr, p7, es7);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
Push( stackPtr, p4, es4 );
Push( stackPtr, p5, es5 );
Push( stackPtr, p6, es6 );
Push( stackPtr, p7, es7 );
return (unsigned int)(stackPtr-stack);
}
/// Builds up a function call and all parameters onto a stack
/// \param[out] Destination stack, which must be big enough to hold all parameters
template <class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8>
unsigned int BuildStack(char *stack, P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8,
bool es1=true, bool es2=true, bool es3=true, bool es4=true, bool es5=true, bool es6=true, bool es7=true, bool es8=true )
{
char *stackPtr = (char*) stack;
SerializeHeader(stackPtr, 8);
PushHeader(stackPtr, p1, es1);
PushHeader(stackPtr, p2, es2);
PushHeader(stackPtr, p3, es3);
PushHeader(stackPtr, p4, es4);
PushHeader(stackPtr, p5, es5);
PushHeader(stackPtr, p6, es6);
PushHeader(stackPtr, p7, es7);
PushHeader(stackPtr, p8, es8);
Push( stackPtr, p1, es1 );
Push( stackPtr, p2, es2 );
Push( stackPtr, p3, es3 );
Push( stackPtr, p4, es4 );
Push( stackPtr, p5, es5 );
Push( stackPtr, p6, es6 );
Push( stackPtr, p7, es7 );
Push( stackPtr, p8, es8 );
return (unsigned int)(stackPtr-stack);
}
/// \internal
template <class item>
void Push( char*& p, item const i, bool doEndianSwap ) {
memcpy( (void*)p, (void*)&i, sizeof( i ) );
if (doEndianSwap && RakNet::BitStream::DoEndianSwap())
RakNet::BitStream::ReverseBytesInPlace((unsigned char*) p,sizeof( i ));
p += sizeof( i );
}
/// \internal
template <class item>
void Push( char*& p, item*const i, bool doEndianSwap) {
memcpy( (void*)p, (void*)i, sizeof( *i ) );
if (doEndianSwap && RakNet::BitStream::DoEndianSwap())
RakNet::BitStream::ReverseBytesInPlace((unsigned char*) p,sizeof( i ));
p += sizeof( *i );
}
/// \internal
template <class item>
void Push( char*& p, item const*const i, bool doEndianSwap) {
memcpy( (void*)p, (void*)i, sizeof( *i ) );
if (doEndianSwap && RakNet::BitStream::DoEndianSwap())
RakNet::BitStream::ReverseBytesInPlace((unsigned char*) p,sizeof( i ));
p += sizeof( *i );
}
/// \internal
void Push( char*& p, char*const i, bool doEndianSwap);
/// \internal
void Push( char*& p, const char*const i, bool doEndianSwap );
// THIS STRUCTURE LAYOUT IS HARDCODED INTO THE ASSEMBLY. Unfortunately, that appears to be the
// only way to do it.
struct CallParams {
#if AUTO_RPC_ABI
#if AUTO_RPC_FLOAT_REG_PARAMS
// on most platforms, just a bool telling us whether we need any floats.
unsigned numRealParams;
#if AUTO_RPC_CREATE_FLOAT_MAP
//
// bitmask: bit(n) set indicate parameter n is a float, not an int.
//
unsigned realMap;
#endif
// N.B. these may not have type HardwareReal - they're not promoted or converted.
#if AUTO_RPC_ALLOC_SEPARATE_FLOATS
HardwareReal realParams[ AUTO_RPC_FLOAT_REG_PARAMS ];
#endif
#endif // AUTO_RPC_FLOAT_REG_PARAMS
unsigned numIntParams;
#if !AUTO_RPC_ALLOC_SEPARATE_FLOATS && AUTO_RPC_FLOAT_REG_PARAMS && AUTO_RPC_CREATE_FLOAT_MAP
union {
HardwareReal realParams[ AUTO_RPC_FLOAT_REG_PARAMS ];
#endif
NaturalWord intParams[ ( AUTO_RPC_MAX_PARAMS > AUTO_RPC_INT_REG_PARAMS ? AUTO_RPC_MAX_PARAMS : AUTO_RPC_INT_REG_PARAMS ) + AUTO_RPC_STACK_PADDING ];
#if !AUTO_RPC_ALLOC_SEPARATE_FLOATS && AUTO_RPC_FLOAT_REG_PARAMS && AUTO_RPC_CREATE_FLOAT_MAP
};
#endif
char refParams[ AUTO_RPC_MAX_PARAMS * AUTO_RPC_REF_ALIGN ];
#endif // AUTO_RPC_ABI
};
/// Given a stack, the length of the stack, a possible last parameter, and a possible this pointer, build a call to a C or C++ function
bool DeserializeParametersAndBuildCall(
CallParams &call,
char *in, unsigned int inLength,
void *lastParam, void *thisPtr);
// Given the output of DeserializeParametersAndBuildCall, actually call a function
bool CallWithStack( CallParams& call, void *functionPtr );
/// \internal
/// functions to return the size of the item.
template <class item>
size_t D_size( item const ) { return sizeof( item ); }
/// \internal
/// functions to return the size of the item.
template <class item>
size_t D_size( item const*const ) { return sizeof( item ); }
/// \internal
/// functions to return the size of the item.
template <class item>
size_t D_size( item*const ) { return sizeof( item ); }
/// \internal
size_t D_size( char*const str );
/// \internal
size_t D_size( char const*const str );
/// \internal
enum {
// to maintain binary compatibility with a historical decision, bit 1 is not used
// in defining the "well known param" types
PARAM_TYPE_MASK = 0x5,
INT_PARAM = 0, // pass by value an integer or structure composed of integers.
REAL_PARAM = 1, // pass by value a SINGLE floating point parameter.
REF_PARAM = 4, // pass a pointer or reference to data which must be aligned.
STR_PARAM = 5, // pass a pointer to this data, which need not be unaligned;
// but MUST be null terminated.
// OBJECT_PARAM = 8, // TODO: pass by value an object, object id as first uint32_t of serialized data?
// OBJECT_REF_PARAM = 9, // TODO: pass by reference an object, object id as first uint32_t of serialized data?
// SC == "Shift count" (Bit index); which is always useful.
ENDIAN_SWAP_SC = 1, DO_ENDIAN_SWAP = 1 << ENDIAN_SWAP_SC,
RESERVED_BITS = 0xf8,
};
/// \internal
template <class item>
unsigned D_type( item const ) { return INT_PARAM; }
/// \internal
template <class item>
unsigned D_type( item const*const ) { return REF_PARAM; }
/// \internal
template <class item>
unsigned D_type( item*const ) { return REF_PARAM; }
/// \internal
unsigned D_type( const char*const );
/// \internal
unsigned D_type( char*const );
/// \internal
unsigned D_type( float );
/// \internal
unsigned D_type( double );
/// \internal
unsigned D_type( long double );
/// \internal
template <class item>
void PushHeader( char*& p, item const i, bool endianSwap ) {
unsigned int s = (unsigned int) D_size( i );
unsigned char f = D_type( i ) | ( ((int) endianSwap) << ENDIAN_SWAP_SC );
Push( p, s, endianSwap );
Push( p, f, false );
}
/// \internal
/// This encodes the Pointer-to-a-Member-Function we use.
struct PMF {
// This is necessary to make us look like a POD - but it's a crash waiting to happen.
PMF()
{
;
}
// There is used to cast from the NetworkIDObject into the base object - the pointers stored in
// the structure's start address in memory.
void* (*castUp)(void*);
#ifdef __GNUC__
typedef GenRPC::NaturalWord NaturalWord;
// GCC has a simple, consistent PMF structure.
union {
struct {
NaturalWord func_address_or_vtable_index;
NaturalWord class_offset;
};
NaturalWord raw_pointer[2];
};
// Copy constructor - so we can assign transparently.
PMF( PMF const& pmf )
: castUp( pmf.castUp ),
func_address_or_vtable_index( pmf.func_address_or_vtable_index ),
class_offset( pmf.class_offset )
{
;
}
// This is provided som PMF can be initialised as null.
PMF( int i )
: castUp(0),
func_address_or_vtable_index( 0 ),
class_offset( 0 )
{
assert( i == 0 );
}
// Backwards compatibility - provide support for single-inheritance or non-object members.
PMF( void* func )
: castUp(0),
func_address_or_vtable_index( reinterpret_cast<NaturalWord>( func ) ),
class_offset( 0 )
{
;
}
// Hack: allow construction from function-address/class offset; not sure this is used.
PMF( void* func, unsigned int offset )
: castUp( 0 ), func_address_or_vtable_index( reinterpret_cast<NaturalWord>( func ) ),
class_offset( offset )
{
;
}
// This initializes our PMF from the compiler's PMF.
template <typename Func>
PMF( Func func, void* (*_cast)(void*) )
: castUp( _cast ),
func_address_or_vtable_index( ((NaturalWord*)&func)[0] ),
class_offset( ((NaturalWord*)&func)[1] )
{
assert( sizeof(func) == sizeof(NaturalWord[2]) );
}
// Return the address in memory of the function to ASM call, for a particular object
// The choice of void* as return type is for backwards compatibility.
void* computeFuncAddr( void* object ) {
if ( ( func_address_or_vtable_index & 1 ) == 0 )
{
return reinterpret_cast<void*>( func_address_or_vtable_index );
}
else
{
void* _object = computeThis(object);;
char* vtable = (char*)*(NaturalWord**)_object;
return reinterpret_cast<void*>( *(NaturalWord*)( vtable + func_address_or_vtable_index - 1 ) );
}
}
// Take the object and return the address of the derived class to which this method belongs.
void* computeThis( void* object ) {
if ( castUp )
object = castUp( object );
#ifdef AUTO_RPC_USE_DYNAMIC_CAST
if ( !object)
return 0;
#endif
return (void*)( (char*)object + class_offset );
}
#elif _MSC_VER
#pragma warning( push )
typedef GenRPC::NaturalWord NaturalWord;
#pragma warning( disable : 4201 ) // warning C4201: nonstandard extension used : nameless struct/union
union {
struct {
NaturalWord func_address;
NaturalWord class_offset;
NaturalWord vinheritance;
NaturalWord vtable_index;
};
NaturalWord raw_pointer[4];
};
// Copy constructor - so we can assign transparently.
PMF( PMF const& pmf )
: castUp( pmf.castUp ),
func_address( pmf.func_address ),
class_offset( pmf.class_offset ),
vinheritance( pmf.vinheritance ) ,
vtable_index( pmf.vtable_index )
{
;
}
// This is used to initializes a null PMF.
PMF( int i )
: castUp( 0 ),
func_address( 0 ),
class_offset( 0 ),
vinheritance( 0 ),
vtable_index( 0 )
{
assert( i == 0 );
}
// Backwards compatibility - provide support for single-inheritance or non-object member
PMF( void* func )
: castUp( 0 ),
#pragma warning( disable : 4311 ) // warning C4311: 'reinterpret_cast' : pointer truncation from 'void *' to 'GenRPC::PMF::NaturalWord'
func_address( reinterpret_cast<NaturalWord>( func ) ),
class_offset( 0 ),
vinheritance( 0 ),
vtable_index( 0 )
{
;
}
// Hack: allow construction from function-address/class offset
PMF( void* func, unsigned int offset )
: castUp( 0 ),
#pragma warning( disable : 4311 ) // warning C4311: 'reinterpret_cast' : pointer truncation from 'void *' to 'GenRPC::PMF::NaturalWord'
func_address( reinterpret_cast<NaturalWord>( func ) ),
class_offset( offset ),
vinheritance( 0 ),
vtable_index( 0 )
{
;
}
// This initializes our PMF from the compiler's PMF.
template <typename Func>
PMF( Func func, void* (*_cast)(void*) ) : castUp( _cast )
{
memset( raw_pointer, 0, sizeof(raw_pointer ) );
memcpy( raw_pointer, &func, sizeof( func ) );
}
// Return the address in memory of the function to ASM call, for a particular object
// The choice of void* as return type is for backwards compatibility.
void* computeFuncAddr( void* ) {
#pragma warning( disable : 4312 ) // warning C4312: 'reinterpret_cast' : conversion from 'GenRPC::PMF::NaturalWord' to 'void *' of greater size
return reinterpret_cast<void*>( func_address );
}
// Take the object and return the address of the derived class to which this method belongs.
void* computeThis( void* object ) {
// all offsets are relative to the base object - case up ensure we have that, at the cost of another
// another annoying virtual function call. Need to merge both using a single virtual funciton call.
if ( castUp )
object = castUp( object );
#ifdef AUTO_RPC_USE_DYNAMIC_CAST
// propogate failure of dynamic cast.
if ( !castUp )
return 0;
#endif
if ( vtable_index ) {
NaturalWord** vtable = (NaturalWord**)((char*)object + vinheritance);
return (void*)( (char*)vtable + class_offset + (*vtable)[ vtable_index ] );
} else {
return (void*)( (char*)object + class_offset );
}
}
#pragma warning ( pop )
#else
#error RakNet:AutoRPC: No support for your compilers PMF
#endif
bool operator==(PMF const& pmf) { return !memcmp( this, &pmf, sizeof(pmf) ); }
bool operator!=(PMF const& pmf) { return !operator==( pmf ); }
};
/// \internal Meta Programming - these return the # of args used by a function.
template <typename R, class C>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)() ) { return 0; }
template <typename R, class C, typename P1>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1) ) { return 1; }
template <typename R, class C, typename P1, typename P2>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2) ) { return 2; }
template <typename R, class C, typename P1, typename P2, typename P3>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3) ) { return 3; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4) ) { return 4; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4, typename P5>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4, P5) ) { return 5; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4, P5, P6) ) { return 6; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4, P5, P6, P7) ) { return 7; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4, P5, P6, P7, P8) ) { return 8; }
template <typename R, class C, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9>
static inline int countFuncArgs( R(AUTO_RPC_CALLSPEC C::*)(P1, P2, P3, P4, P5, P6, P7, P8, P9) ) { return 9; }
/// \internal
/// This template provides provides a function that cast's Up from from NetworkIDObject to the base type.
template <class C>
struct CastNetworkIDObject2 {
static void* castUp( void* object )
{
#ifdef AUTO_RPC_USE_DYNAMIC_CAST
return (void*) dynamic_cast< C* >( (NetworkIDObject*) object );
#else
return (void*) ( C* ) ( (NetworkIDObject*) object );
#endif
}
};
/// \internal
/// Template wrapper which initialises the PMF (Pointer to a Member Function) class for a particular a function.
/// \note If you write &DerivedClass::func gcc will convert it into BaseClass::* for template methods, which is why
/// we use an intermediate variable of the precise type - to pass to the PMF constructor.
template <class C, typename T>
struct PMFWrapper : public PMF {
PMFWrapper( T _t ) : PMF( _t, CastNetworkIDObject2< C >::castUp )
{
}
};
}
#endif