Add utilities for formats

This commit is contained in:
David Markowitz 2025-04-09 23:35:55 -07:00
parent 99f6cf2d92
commit 77c88575f9
7 changed files with 417 additions and 0 deletions

View File

@ -16,6 +16,9 @@ set(DCOMMON_SOURCES
"BrickByBrickFix.cpp" "BrickByBrickFix.cpp"
"BinaryPathFinder.cpp" "BinaryPathFinder.cpp"
"FdbToSqlite.cpp" "FdbToSqlite.cpp"
"TinyXmlUtils.cpp"
"Sd0.cpp"
"Lxfml.cpp"
) )
# Workaround for compiler bug where the optimized code could result in a memcpy of 0 bytes, even though that isnt possible. # Workaround for compiler bug where the optimized code could result in a memcpy of 0 bytes, even though that isnt possible.

112
dCommon/Lxfml.cpp Normal file
View File

@ -0,0 +1,112 @@
#include "Lxfml.h"
#include "GeneralUtils.h"
#include "StringifiedEnum.h"
#include "TinyXmlUtils.h"
#include <ranges>
Lxfml::Result Lxfml::NormalizePosition(const std::string_view data) {
Result toReturn;
tinyxml2::XMLDocument doc;
const auto err = doc.Parse(data.data());
if (err != tinyxml2::XML_SUCCESS) {
LOG("Failed to parse xml %s.", StringifiedEnum::ToString(err).data());
return toReturn;
}
TinyXmlUtils::DocumentReader reader(doc);
std::map<std::string/* refID */, std::string> transformations;
auto lxfml = reader["LXFML"];
if (!lxfml) return toReturn;
// First get all the positions of bricks
for (const auto& brick : lxfml["Bricks"]) {
const auto* part = brick.FirstChildElement("Part");
if (part) {
const auto* bone = part->FirstChildElement("Bone");
if (bone) {
auto* transformation = bone->Attribute("transformation");
if (transformation) {
auto* refID = bone->Attribute("refID");
if (refID) transformations[refID] = transformation;
}
}
}
}
// These points are well out of bounds for an actual player
NiPoint3 lowest{10'000, 10'000, 10'000};
NiPoint3 highest{-10'000, -10'000, -10'000};
// Calculate the lowest and highest points on the entire model
for (const auto& transformation : transformations | std::views::values) {
auto split = GeneralUtils::SplitString(transformation, ',');
if (split.size() < 12) {
LOG("Not enough in the split?");
continue;
}
auto x = GeneralUtils::TryParse<float>(split[9]).value();
auto y = GeneralUtils::TryParse<float>(split[10]).value();
auto z = GeneralUtils::TryParse<float>(split[11]).value();
if (x < lowest.x) lowest.x = x;
if (y < lowest.y) lowest.y = y;
if (z < lowest.z) lowest.z = z;
if (highest.x < x) highest.x = x;
if (highest.y < y) highest.y = y;
if (highest.z < z) highest.z = z;
}
auto delta = (highest - lowest) / 2.0f;
auto newRootPos = lowest + delta;
// Clamp the Y to the lowest point on the model
newRootPos.y = lowest.y;
// Adjust all positions to account for the new origin
for (auto& transformation : transformations | std::views::values) {
auto split = GeneralUtils::SplitString(transformation, ',');
if (split.size() < 12) {
LOG("Not enough in the split?");
continue;
}
auto x = GeneralUtils::TryParse<float>(split[9]).value() - newRootPos.x;
auto y = GeneralUtils::TryParse<float>(split[10]).value() - newRootPos.y;
auto z = GeneralUtils::TryParse<float>(split[11]).value() - newRootPos.z;
std::stringstream stream;
for (int i = 0; i < 9; i++) {
stream << split[i];
stream << ',';
}
stream << x << ',' << y << ',' << z;
transformation = stream.str();
}
// Finally write the new transformation back into the lxfml
for (auto& brick : lxfml["Bricks"]) {
auto* part = brick.FirstChildElement("Part");
if (part) {
auto* bone = part->FirstChildElement("Bone");
if (bone) {
auto* transformation = bone->Attribute("transformation");
if (transformation) {
auto* refID = bone->Attribute("refID");
if (refID) {
bone->SetAttribute("transformation", transformations[refID].c_str());
}
}
}
}
}
tinyxml2::XMLPrinter printer;
doc.Print(&printer);
toReturn.lxfml = printer.CStr();
toReturn.center = newRootPos;
return toReturn;
}

21
dCommon/Lxfml.h Normal file
View File

@ -0,0 +1,21 @@
// Darkflame Universe
// Copyright 2025
#ifndef LXFML_H
#define LXFML_H
#include <string>
#include <string_view>
#include "NiPoint3.h"
namespace Lxfml {
struct Result {
std::string lxfml;
NiPoint3 center;
};
[[nodiscard]] Result NormalizePosition(const std::string_view data);
};
#endif //!LXFML_H

136
dCommon/Sd0.cpp Normal file
View File

@ -0,0 +1,136 @@
#include "Sd0.h"
#include <array>
#include <ranges>
#include "BinaryIO.h"
#include "Game.h"
#include "Logger.h"
#include "ZCompression.h"
// Insert header if on first buffer
void WriteHeader(Sd0::BinaryBuffer& chunk) {
chunk.push_back(Sd0::SD0_HEADER[0]);
chunk.push_back(Sd0::SD0_HEADER[1]);
chunk.push_back(Sd0::SD0_HEADER[2]);
chunk.push_back(Sd0::SD0_HEADER[3]);
chunk.push_back(Sd0::SD0_HEADER[4]);
}
// Write the size of the buffer to a chunk
void WriteSize(Sd0::BinaryBuffer& chunk, uint32_t chunkSize) {
for (int i = 0; i < 4; i++) {
char toPush = chunkSize & 0xff;
chunkSize = chunkSize >> 8;
chunk.push_back(toPush);
}
}
int32_t GetDataOffset(bool firstBuffer) {
return firstBuffer ? 9 : 4;
}
Sd0::Sd0(std::istream& buffer) {
char header[5]{};
if (!BinaryIO::BinaryRead(buffer, header) || memcmp(header, SD0_HEADER, sizeof(header)) != 0) {
LOG("Failed to read SD0 header %i %i %i %i %i %i %i", buffer.good(), buffer.tellg(), header[0], header[1], header[2], header[3], header[4]);
return;
}
while (buffer) {
uint32_t chunkSize{};
if (!BinaryIO::BinaryRead(buffer, chunkSize)) {
LOG("%i", m_Chunks.size());
LOG("Failed to read chunk size from stream %i %i", buffer.tellg(), static_cast<int>(m_Chunks.size()));
break;
}
auto& chunk = m_Chunks.emplace_back();
bool firstBuffer = m_Chunks.size() == 1;
auto dataOffset = GetDataOffset(firstBuffer);
// Insert header if on first buffer
if (firstBuffer) {
WriteHeader(chunk);
}
WriteSize(chunk, chunkSize);
chunk.resize(chunkSize + dataOffset);
auto* dataStart = reinterpret_cast<char*>(chunk.data() + dataOffset);
if (!buffer.read(dataStart, chunkSize)) {
m_Chunks.pop_back();
LOG("Failed to read %u bytes from chunk %i", chunkSize, m_Chunks.size() - 1);
break;
}
}
}
void Sd0::FromData(const uint8_t* data, size_t bufferSize) {
const auto originalBufferSize = bufferSize;
if (bufferSize == 0) return;
m_Chunks.clear();
while (bufferSize > 0) {
const auto numToCopy = std::min(MAX_UNCOMPRESSED_CHUNK_SIZE, bufferSize);
const auto* startOffset = data + originalBufferSize - bufferSize;
bufferSize -= numToCopy;
std::array<uint8_t, MAX_UNCOMPRESSED_CHUNK_SIZE> compressedChunk;
const auto compressedSize = ZCompression::Compress(
startOffset, numToCopy,
compressedChunk.data(), compressedChunk.size());
auto& chunk = m_Chunks.emplace_back();
bool firstBuffer = m_Chunks.size() == 1;
auto dataOffset = GetDataOffset(firstBuffer);
if (firstBuffer) {
WriteHeader(chunk);
}
WriteSize(chunk, compressedSize);
chunk.resize(compressedSize + dataOffset);
memcpy(chunk.data() + dataOffset, compressedChunk.data(), compressedSize);
}
}
std::string Sd0::GetAsStringUncompressed() const {
std::string toReturn;
bool first = true;
uint32_t totalSize{};
for (const auto& chunk : m_Chunks) {
auto dataOffset = GetDataOffset(first);
first = false;
const auto chunkSize = chunk.size();
auto oldSize = toReturn.size();
toReturn.resize(oldSize + MAX_UNCOMPRESSED_CHUNK_SIZE);
int32_t error{};
const auto uncompressedSize = ZCompression::Decompress(
chunk.data() + dataOffset, chunkSize - dataOffset,
reinterpret_cast<uint8_t*>(toReturn.data()) + oldSize, MAX_UNCOMPRESSED_CHUNK_SIZE,
error);
totalSize += uncompressedSize;
}
toReturn.resize(totalSize);
return toReturn;
}
std::stringstream Sd0::GetAsStream() const {
std::stringstream toReturn;
for (const auto& chunk : m_Chunks) {
toReturn.write(reinterpret_cast<const char*>(chunk.data()), chunk.size());
}
return toReturn;
}
const std::vector<Sd0::BinaryBuffer>& Sd0::GetAsVector() const {
return m_Chunks;
}

42
dCommon/Sd0.h Normal file
View File

@ -0,0 +1,42 @@
// Darkflame Universe
// Copyright 2025
#ifndef SD0_H
#define SD0_H
#include <fstream>
#include <vector>
// Sd0 is comprised of multiple zlib compressed buffers stored in a row.
class Sd0 {
public:
using BinaryBuffer = std::vector<uint8_t>;
static inline const char* SD0_HEADER = "sd0\x01\xff";
/**
* @brief Max size of an inflated sd0 zlib chunk
*/
static constexpr inline size_t MAX_UNCOMPRESSED_CHUNK_SIZE = 1024 * 256;
Sd0() {}
// Read the input buffer into an internal chunk stream to be used later
Sd0(std::istream& buffer);
// Uncompresses the entire Sd0 buffer and returns it as a string
std::string GetAsStringUncompressed() const;
// Gets the Sd0 buffer as a stream in its raw compressed form
std::stringstream GetAsStream() const;
// Gets the Sd0 buffer as a vector in its raw compressed form
const std::vector<BinaryBuffer>& GetAsVector() const;
// Compress data into a Sd0 buffer
void FromData(const uint8_t* data, size_t bufferSize);
private:
std::vector<BinaryBuffer> m_Chunks{};
};
#endif //!SD0_H

37
dCommon/TinyXmlUtils.cpp Normal file
View File

@ -0,0 +1,37 @@
#include "TinyXmlUtils.h"
#include <tinyxml2.h>
using namespace TinyXmlUtils;
Element DocumentReader::operator[](const std::string_view elem) const {
return Element(m_Doc.FirstChildElement(elem.empty() ? nullptr : elem.data()), elem);
}
Element::Element(tinyxml2::XMLElement* xmlElem, const std::string_view elem) :
m_IteratedName{ elem },
m_Elem{ xmlElem } {
}
Element Element::operator[](const std::string_view elem) const {
const auto* usedElem = elem.empty() ? nullptr : elem.data();
auto* toReturn = m_Elem ? m_Elem->FirstChildElement(usedElem) : nullptr;
return Element(toReturn, m_IteratedName);
}
ElementIterator Element::begin() {
return ElementIterator(m_Elem ? m_Elem->FirstChildElement() : nullptr);
}
ElementIterator Element::end() {
return ElementIterator(nullptr);
}
ElementIterator::ElementIterator(tinyxml2::XMLElement* elem) :
m_CurElem{ elem } {
}
ElementIterator& ElementIterator::operator++() {
if (m_CurElem) m_CurElem = m_CurElem->NextSiblingElement();
return *this;
}

66
dCommon/TinyXmlUtils.h Normal file
View File

@ -0,0 +1,66 @@
// Darkflame Universe
// Copyright 2025
#ifndef TINYXMLUTILS_H
#define TINYXMLUTILS_H
#include <string>
#include "DluAssert.h"
#include <tinyxml2.h>
namespace TinyXmlUtils {
// See cstdlib for iterator technicalities
struct ElementIterator {
ElementIterator(tinyxml2::XMLElement* elem);
ElementIterator& operator++();
tinyxml2::XMLElement* operator->() { DluAssert(m_CurElem); return m_CurElem; }
tinyxml2::XMLElement& operator*() { DluAssert(m_CurElem); return *m_CurElem; }
bool operator==(const ElementIterator& other) const { return other.m_CurElem == m_CurElem; }
private:
tinyxml2::XMLElement* m_CurElem{ nullptr };
};
// Wrapper class to act as an iterator over xml elements.
// All the normal rules that apply to Iterators in the std library apply here.
class Element {
public:
Element(tinyxml2::XMLElement* xmlElem, const std::string_view elem);
// The first child element of this element.
ElementIterator begin();
// Always returns an ElementIterator which points to nullptr.
// TinyXml2 return NULL when you've reached the last child element so
// you can't do any funny one past end logic here.
ElementIterator end();
// Get a child element
Element operator[](const std::string_view elem) const;
Element operator[](const char* elem) const { return operator[](std::string_view(elem)); };
// Whether or not data exists for this element
operator bool() const { return m_Elem != nullptr; }
const tinyxml2::XMLElement* operator->() const { return m_Elem; }
private:
const char* GetElementName() const { return m_IteratedName.empty() ? nullptr : m_IteratedName.c_str(); }
const std::string m_IteratedName;
tinyxml2::XMLElement* m_Elem;
};
class DocumentReader {
public:
DocumentReader(tinyxml2::XMLDocument& doc) : m_Doc{ doc } {}
Element operator[](const std::string_view elem) const;
private:
tinyxml2::XMLDocument& m_Doc;
};
};
#endif //!TINYXMLUTILS_H