DarkflameServer/docker/bitstream.py

427 lines
13 KiB
Python
Raw Normal View History

2021-12-07 13:50:05 +00:00
"""
Module for sequential reading (ReadStream) and writing (WriteStream) from/to bytes.
Also includes objects for converting datatypes from/to bytes, similar to the standard library struct module.
"""
# https://github.com/lcdr/bitstream/blob/master/bitstream/__init__.py
import math
import struct
from abc import ABC, abstractmethod
from typing import AnyStr, ByteString, cast, Generic, overload, SupportsBytes, Type, TypeVar
T = TypeVar('T')
class _Struct(Generic[T]):
_struct: struct.Struct
def __new__(cls, value: T) -> bytes:
return cls._struct.pack(value)
def __str__(self) -> str:
return "<Struct %s>" % _Struct._struct.format
@classmethod
def deserialize(cls, stream: "ReadStream") -> T:
return cast(T, cls._struct.unpack(stream.read(bytes, length=cls._struct.size))[0])
class IntStruct(_Struct[int]):
pass
class UnsignedIntStruct(IntStruct):
@classmethod
def deserialize_compressed(cls, stream: "ReadStream") -> int:
number_of_bytes = cls._struct.size
current_byte = number_of_bytes - 1
while current_byte > 0:
if stream.read(c_bit):
current_byte -= 1
else:
# Read the rest of the bytes
read = stream.read(bytes, length=current_byte + 1) + bytes(number_of_bytes - current_byte - 1)
return cast(int, cls._struct.unpack(read)[0])
# All but the first bytes are 0. If the upper half of the last byte is a 0 (positive) or 16 (negative) then what we read will be a 1 and the remaining 4 bits.
# Otherwise we read a 0 and the 8 bits
if stream.read(c_bit):
start = bytes([stream.read_bits(4)])
else:
start = stream.read(bytes, length=1)
read = start + bytes(number_of_bytes - current_byte - 1)
return cast(int, cls._struct.unpack(read)[0])
class SignedIntStruct(IntStruct):
pass
class c_bool(_Struct[bool]):
_struct = struct.Struct("<?")
class c_float(_Struct[float]):
_struct = struct.Struct("<f")
class c_double(_Struct[float]):
_struct = struct.Struct("<d")
class c_int(SignedIntStruct):
_struct = struct.Struct("<i")
class c_uint(UnsignedIntStruct):
_struct = struct.Struct("<I")
class c_byte(SignedIntStruct):
_struct = struct.Struct("<b")
class c_ubyte(UnsignedIntStruct):
_struct = struct.Struct("<B")
class c_short(SignedIntStruct):
_struct = struct.Struct("<h")
class c_ushort(UnsignedIntStruct):
_struct = struct.Struct("<H")
class c_long(SignedIntStruct):
_struct = struct.Struct("<l")
class c_ulong(UnsignedIntStruct):
_struct = struct.Struct("<L")
class c_longlong(SignedIntStruct):
_struct = struct.Struct("<q")
class c_ulonglong(UnsignedIntStruct):
_struct = struct.Struct("<Q")
c_int8 = c_byte
c_uint8 = c_ubyte
c_int16 = c_short
c_uint16 = c_ushort
c_int32 = c_long
c_uint32 = c_ulong
c_int64 = c_longlong
c_uint64 = c_ulonglong
class c_bit:
def __init__(self, boolean: bool):
self.value = boolean
class Serializable(ABC):
"""By inheriting from this class you can create types which you can pass to the read/write bitstream functions."""
@abstractmethod
def serialize(self, stream: "WriteStream") -> None:
"""Write this object to the bitstream."""
pass
@classmethod
@abstractmethod
def deserialize(cls, stream: "ReadStream") -> "Serializable":
"""Create a new object from the bitstream."""
pass
S = TypeVar('S', bound=Serializable)
class ReadStream:
"""Allows simple sequential reading from bytes."""
_data: bytes
def __init__(self, data: bytes, unlocked: bool=False):
self._data = data
self._unlocked = unlocked
self._read_offset = 0
@property
def read_offset(self) -> int:
if not self._unlocked:
raise RuntimeError("access to read offset on locked stream")
return self._read_offset
@read_offset.setter
def read_offset(self, value: int) -> None:
if not self._unlocked:
raise RuntimeError("access to read offset on locked stream")
self._read_offset = value
def skip_read(self, byte_length: int) -> None:
"""Skips reading byte_length number of bytes."""
self._read_offset += byte_length * 8
@overload
def read(self, arg_type: Type[_Struct[T]]) -> T:
pass
@overload
def read(self, arg_type: Type[c_bit]) -> bool:
pass
@overload
def read(self, arg_type: Type[S]) -> S:
pass
@overload
def read(self, arg_type: Type[bytes], length: int) -> bytes:
pass
@overload
def read(self, arg_type: Type[bytes], allocated_length: int=None, length_type: Type[UnsignedIntStruct]=None) -> bytes:
pass
@overload
def read(self, arg_type: Type[str], allocated_length: int=None, length_type: Type[UnsignedIntStruct]=None) -> str:
pass
def read(self, arg_type, length=None, allocated_length=None, length_type=None):
"""
Read a value of type arg_type from the bitstream.
allocated_length is for fixed-length strings.
length_type is for variable-length strings.
"""
if issubclass(arg_type, _Struct):
return arg_type.deserialize(self)
if issubclass(arg_type, c_bit):
return self._read_bit()
if issubclass(arg_type, Serializable):
return arg_type.deserialize(self)
if allocated_length is not None or length_type is not None:
return self._read_str(arg_type, allocated_length, length_type)
if issubclass(arg_type, bytes):
return self._read_bytes(length)
raise TypeError(arg_type)
def _read_str(self, arg_type: Type[AnyStr], allocated_length: int=None, length_type: Type[UnsignedIntStruct]=None) -> AnyStr:
if issubclass(arg_type, str):
char_size = 2
else:
char_size = 1
if length_type is not None:
# Variable-length string
length = self.read(length_type)
value = self._read_bytes(length*char_size)
elif allocated_length is not None:
# Fixed-length string
value = self._read_bytes(allocated_length*char_size)
# find null terminator
for i in range(len(value)):
char = value[i*char_size:(i+1)*char_size]
if char == bytes(char_size):
value = value[:i*char_size]
break
else:
raise RuntimeError("String doesn't have null terminator")
else:
raise ValueError
if issubclass(arg_type, str):
return value.decode("utf-16-le")
return value
def _read_bit(self) -> bool:
bit = self._data[self._read_offset // 8] & 0x80 >> self._read_offset % 8 != 0
self._read_offset += 1
return bit
def read_bits(self, number_of_bits: int) -> int:
assert 0 < number_of_bits < 8
output = (self._data[self._read_offset // 8] << self._read_offset % 8) & 0xff # First half
if self._read_offset % 8 != 0 and number_of_bits > 8 - self._read_offset % 8: # If we have a second half, we didn't read enough bytes in the first half
output |= self._data[self._read_offset // 8 + 1] >> 8 - self._read_offset % 8 # Second half (overlaps byte boundary)
output >>= 8 - number_of_bits
self._read_offset += number_of_bits
return output
def _read_bytes(self, length: int) -> bytes:
if self._read_offset % 8 == 0:
num_bytes_read = length
else:
num_bytes_read = length+1
# check whether there is enough left to read
if len(self._data) - self._read_offset//8 < num_bytes_read:
raise EOFError("Trying to read %i bytes but only %i remain" % (num_bytes_read, len(self._data) - self._read_offset // 8))
if self._read_offset % 8 == 0:
output = self._data[self._read_offset // 8:self._read_offset // 8 + num_bytes_read]
else:
# data is shifted
# clear the part before the struct
firstbyte = self._data[self._read_offset // 8] & ((1 << 8 - self._read_offset % 8) - 1)
output = firstbyte.to_bytes(1, "big") + self._data[self._read_offset // 8 + 1:self._read_offset // 8 + num_bytes_read]
# shift back
output = (int.from_bytes(output, "big") >> (8 - self._read_offset % 8)).to_bytes(length, "big")
self._read_offset += length * 8
return output
def read_compressed(self, arg_type: Type[UnsignedIntStruct]) -> int:
return arg_type.deserialize_compressed(self)
def read_remaining(self) -> bytes:
return self._read_bytes(len(self._data) - int(math.ceil(self._read_offset / 8)))
def align_read(self) -> None:
if self._read_offset % 8 != 0:
self._read_offset += 8 - self._read_offset % 8
def all_read(self) -> bool:
# This is not accurate to the bit, just to the byte
return math.ceil(self._read_offset / 8) == len(self._data)
# Note: a ton of the logic here assumes that the write offset is never moved back, that is, that you never overwrite things
# Doing so may break everything
class WriteStream(SupportsBytes):
"""Allows simple sequential writing to bytes."""
_data: bytearray
def __init__(self) -> None:
self._data = bytearray()
self._write_offset = 0
self._was_cast_to_bytes = False
def __bytes__(self) -> bytes:
if self._was_cast_to_bytes:
raise RuntimeError("WriteStream can only be cast to bytes once")
self._was_cast_to_bytes = True
return bytes(self._data)
@overload
def write(self, arg: ByteString) -> None:
pass
@overload
def write(self, arg: _Struct) -> None:
pass
@overload
def write(self, arg: c_bit) -> None:
pass
@overload
def write(self, arg: Serializable) -> None:
pass
@overload
def write(self, arg: AnyStr, allocated_length: int=None, length_type: Type[UnsignedIntStruct]=None) -> None:
pass
def write(self, arg, allocated_length=None, length_type=None):
"""
Write a value to the bitstream.
allocated_length is for fixed-length strings.
length_type is for variable-length strings.
"""
if isinstance(arg, c_bit):
self._write_bit(arg.value)
return
if isinstance(arg, Serializable):
arg.serialize(self)
return
if allocated_length is not None or length_type is not None:
self._write_str(arg, allocated_length, length_type)
return
if isinstance(arg, (bytes, bytearray)):
self._write_bytes(arg)
return
raise TypeError(arg)
def _write_str(self, str_: AnyStr, allocated_length: int=None, length_type: Type[UnsignedIntStruct]=None) -> None:
# possibly include default encoded length for non-variable-length strings (seems to be 33)
if isinstance(str_, str):
encoded_str = str_.encode("utf-16-le")
else:
encoded_str = str_
if length_type is not None:
# Variable-length string
self.write(length_type(len(str_))) # note: there's also a version that uses the length of the encoded string, should that be used?
elif allocated_length is not None:
# Fixed-length string
# null terminator
if isinstance(str_, str):
char_size = 2
else:
char_size = 1
if len(str_)+1 > allocated_length:
raise ValueError("String too long!")
encoded_str += bytes(allocated_length*char_size-len(encoded_str))
self._write_bytes(encoded_str)
def _write_bit(self, bit: bool) -> None:
self._alloc_bits(1)
if bit: # we don't actually have to do anything if the bit is 0
self._data[self._write_offset//8] |= 0x80 >> self._write_offset % 8
self._write_offset += 1
def write_bits(self, value: int, number_of_bits: int) -> None:
assert 0 < number_of_bits < 8
self._alloc_bits(number_of_bits)
if number_of_bits < 8: # In the case of a partial byte, the bits are aligned from the right (bit 0) rather than the left (as in the normal internal representation)
value = value << (8 - number_of_bits) & 0xff # Shift left to get the bits on the left, as in our internal representation
if self._write_offset % 8 == 0:
self._data[self._write_offset//8] = value
else:
self._data[self._write_offset//8] |= value >> self._write_offset % 8 # First half
if 8 - self._write_offset % 8 < number_of_bits: # If we didn't write it all out in the first half (8 - self._write_offset % 8 is the number we wrote in the first half)
self._data[self._write_offset//8 + 1] = (value << 8 - self._write_offset % 8) & 0xff # Second half (overlaps byte boundary)
self._write_offset += number_of_bits
def _write_bytes(self, byte_arg: bytes) -> None:
if self._write_offset % 8 == 0:
self._data[self._write_offset//8:self._write_offset//8+len(byte_arg)] = byte_arg
else:
# shift new input to current shift
new = (int.from_bytes(byte_arg, "big") << (8 - self._write_offset % 8)).to_bytes(len(byte_arg)+1, "big")
# update current byte
self._data[self._write_offset//8] |= new[0]
# add rest
self._data[self._write_offset//8+1:self._write_offset//8+1+len(byte_arg)] = new[1:]
self._write_offset += len(byte_arg)*8
@overload
def write_compressed(self, byte_arg: UnsignedIntStruct) -> None:
pass
@overload
def write_compressed(self, byte_arg: bytes) -> None:
pass
def write_compressed(self, byte_arg) -> None:
current_byte = len(byte_arg) - 1
# Write upper bytes with a single 1
# From high byte to low byte, if high byte is 0 then write 1. Otherwise write 0 and the remaining bytes
while current_byte > 0:
is_zero = byte_arg[current_byte] == 0
self._write_bit(is_zero)
if not is_zero:
# Write the remainder of the data
self._write_bytes(byte_arg[:current_byte + 1])
return
current_byte -= 1
# If the upper half of the last byte is 0 then write 1 and the remaining 4 bits. Otherwise write 0 and the 8 bits.
is_zero = byte_arg[0] & 0xF0 == 0x00
self._write_bit(is_zero)
if is_zero:
self.write_bits(byte_arg[0], 4)
else:
self._write_bytes(byte_arg[:1])
def align_write(self) -> None:
"""Align the write offset to the byte boundary."""
if self._write_offset % 8 != 0:
self._alloc_bits(8 - self._write_offset % 8)
self._write_offset += 8 - self._write_offset % 8
def _alloc_bits(self, number_of_bits: int) -> None:
bytes_to_allocate: int = math.ceil((self._write_offset + number_of_bits) / 8) - len(self._data)
if bytes_to_allocate > 0:
self._data += bytes(bytes_to_allocate)