DarkflameServer/dCommon/AmfSerialize.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

199 lines
4.3 KiB
C++
Raw Normal View History

#include "AmfSerialize.h"
#include "Game.h"
#include "Logger.h"
// Writes an AMFValue pointer to a RakNet::BitStream
template<>
void RakNet::BitStream::Write<AMFBaseValue&>(AMFBaseValue& value) {
eAmf type = value.GetValueType();
this->Write(type);
switch (type) {
case eAmf::Integer: {
this->Write<AMFIntValue&>(static_cast<AMFIntValue&>(value));
break;
}
case eAmf::Double: {
this->Write<AMFDoubleValue&>(static_cast<AMFDoubleValue&>(value));
break;
}
case eAmf::String: {
this->Write<AMFStringValue&>(static_cast<AMFStringValue&>(value));
break;
}
case eAmf::Array: {
this->Write<AMFArrayValue&>(static_cast<AMFArrayValue&>(value));
break;
}
default: {
LOG("Encountered unwritable AMFType %i!", type);
[[fallthrough]];
}
case eAmf::Undefined:
[[fallthrough]];
case eAmf::Null:
[[fallthrough]];
case eAmf::False:
[[fallthrough]];
case eAmf::True:
[[fallthrough]];
case eAmf::Date:
[[fallthrough]];
case eAmf::Object:
[[fallthrough]];
case eAmf::XML:
[[fallthrough]];
case eAmf::XMLDoc:
[[fallthrough]];
case eAmf::ByteArray:
[[fallthrough]];
case eAmf::VectorInt:
[[fallthrough]];
case eAmf::VectorUInt:
[[fallthrough]];
case eAmf::VectorDouble:
[[fallthrough]];
case eAmf::VectorObject:
[[fallthrough]];
case eAmf::Dictionary:
break;
}
}
/**
* A private function to write an value to a RakNet::BitStream
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteUInt29(RakNet::BitStream& bs, uint32_t v) {
unsigned char b4 = static_cast<unsigned char>(v);
if (v < 0x00200000) {
b4 = b4 & 0x7F;
if (v > 0x7F) {
unsigned char b3;
v = v >> 7;
b3 = static_cast<unsigned char>(v) | 0x80;
if (v > 0x7F) {
unsigned char b2;
v = v >> 7;
b2 = static_cast<unsigned char>(v) | 0x80;
bs.Write(b2);
}
bs.Write(b3);
}
} else {
unsigned char b1;
unsigned char b2;
unsigned char b3;
v = v >> 8;
b3 = static_cast<unsigned char>(v) | 0x80;
v = v >> 7;
b2 = static_cast<unsigned char>(v) | 0x80;
v = v >> 7;
b1 = static_cast<unsigned char>(v) | 0x80;
bs.Write(b1);
bs.Write(b2);
bs.Write(b3);
}
bs.Write(b4);
}
/**
* Writes a flag number to a RakNet::BitStream
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteFlagNumber(RakNet::BitStream& bs, uint32_t v) {
v = (v << 1) | 0x01;
WriteUInt29(bs, v);
}
/**
* Writes an AMFString to a RakNet::BitStream
*
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteAMFString(RakNet::BitStream& bs, const std::string& str) {
WriteFlagNumber(bs, static_cast<uint32_t>(str.size()));
bs.Write(str.c_str(), static_cast<uint32_t>(str.size()));
}
/**
* Writes an U16 to a bitstream
*
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteAMFU16(RakNet::BitStream& bs, uint16_t value) {
bs.Write(value);
}
/**
* Writes an U32 to a bitstream
*
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteAMFU32(RakNet::BitStream& bs, uint32_t value) {
bs.Write(value);
}
/**
* Writes an U64 to a bitstream
*
* RakNet writes in the correct byte order - do not reverse this.
*/
void WriteAMFU64(RakNet::BitStream& bs, uint64_t value) {
bs.Write(value);
}
// Writes an AMFIntegerValue to BitStream
template<>
void RakNet::BitStream::Write<AMFIntValue&>(AMFIntValue& value) {
WriteUInt29(*this, value.GetValue());
}
// Writes an AMFDoubleValue to BitStream
template<>
void RakNet::BitStream::Write<AMFDoubleValue&>(AMFDoubleValue& value) {
double d = value.GetValue();
WriteAMFU64(*this, *reinterpret_cast<uint64_t*>(&d));
}
// Writes an AMFStringValue to BitStream
template<>
void RakNet::BitStream::Write<AMFStringValue&>(AMFStringValue& value) {
WriteAMFString(*this, value.GetValue());
}
// Writes an AMFArrayValue to BitStream
template<>
void RakNet::BitStream::Write<AMFArrayValue&>(AMFArrayValue& value) {
uint32_t denseSize = value.GetDense().size();
WriteFlagNumber(*this, denseSize);
auto it = value.GetAssociative().begin();
auto end = value.GetAssociative().end();
while (it != end) {
WriteAMFString(*this, it->first);
this->Write<AMFBaseValue&>(*it->second);
it++;
}
this->Write(eAmf::Null);
if (denseSize > 0) {
auto it2 = value.GetDense().begin();
auto end2 = value.GetDense().end();
while (it2 != end2) {
this->Write<AMFBaseValue&>(**it2);
it2++;
}
}
}