mirror of
https://github.com/DarkflameUniverse/DarkflameServer.git
synced 2024-12-23 14:03:34 +00:00
200 lines
5.0 KiB
C++
200 lines
5.0 KiB
C++
|
#include "NiQuaternion.h"
|
||
|
|
||
|
// C++
|
||
|
#include <cmath>
|
||
|
|
||
|
// Static Variables
|
||
|
const NiQuaternion NiQuaternion::IDENTITY(1, 0, 0, 0);
|
||
|
|
||
|
//! The initializer
|
||
|
NiQuaternion::NiQuaternion(void) {
|
||
|
this->w = 1;
|
||
|
this->x = 0;
|
||
|
this->y = 0;
|
||
|
this->z = 0;
|
||
|
}
|
||
|
|
||
|
//! The initializer
|
||
|
NiQuaternion::NiQuaternion(float w, float x, float y, float z) {
|
||
|
this->w = w;
|
||
|
this->x = x;
|
||
|
this->y = y;
|
||
|
this->z = z;
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
NiQuaternion::~NiQuaternion(void) {}
|
||
|
|
||
|
|
||
|
// MARK: Setters / Getters
|
||
|
|
||
|
//! Gets the W coordinate
|
||
|
float NiQuaternion::GetW(void) const {
|
||
|
return this->w;
|
||
|
}
|
||
|
|
||
|
//! Sets the W coordinate
|
||
|
void NiQuaternion::SetW(float w) {
|
||
|
this->w = w;
|
||
|
}
|
||
|
|
||
|
//! Gets the X coordinate
|
||
|
float NiQuaternion::GetX(void) const {
|
||
|
return this->x;
|
||
|
}
|
||
|
|
||
|
//! Sets the X coordinate
|
||
|
void NiQuaternion::SetX(float x) {
|
||
|
this->x = x;
|
||
|
}
|
||
|
|
||
|
//! Gets the Y coordinate
|
||
|
float NiQuaternion::GetY(void) const {
|
||
|
return this->y;
|
||
|
}
|
||
|
|
||
|
//! Sets the Y coordinate
|
||
|
void NiQuaternion::SetY(float y) {
|
||
|
this->y = y;
|
||
|
}
|
||
|
|
||
|
//! Gets the Z coordinate
|
||
|
float NiQuaternion::GetZ(void) const {
|
||
|
return this->z;
|
||
|
}
|
||
|
|
||
|
//! Sets the Z coordinate
|
||
|
void NiQuaternion::SetZ(float z) {
|
||
|
this->z = z;
|
||
|
}
|
||
|
|
||
|
|
||
|
// MARK: Member Functions
|
||
|
|
||
|
//! Returns the forward vector from the quaternion
|
||
|
Vector3 NiQuaternion::GetForwardVector(void) const {
|
||
|
return Vector3(2 * (x * z + w * y), 2 * (y * z - w * x), 1 - 2 * (x * x + y * y));
|
||
|
}
|
||
|
|
||
|
//! Returns the up vector from the quaternion
|
||
|
Vector3 NiQuaternion::GetUpVector(void) const {
|
||
|
return Vector3(2 * (x * y - w * z), 1 - 2 * (x * x + z * z), 2 * (y * z + w * x));
|
||
|
}
|
||
|
|
||
|
//! Returns the right vector from the quaternion
|
||
|
Vector3 NiQuaternion::GetRightVector(void) const {
|
||
|
return Vector3(1 - 2 * (y * y + z * z), 2 * (x * y + w * z), 2 * (x * z - w * y));
|
||
|
}
|
||
|
|
||
|
Vector3 NiQuaternion::GetEulerAngles() const {
|
||
|
Vector3 angles;
|
||
|
|
||
|
// roll (x-axis rotation)
|
||
|
const float sinr_cosp = 2 * (w * x + y * z);
|
||
|
const float cosr_cosp = 1 - 2 * (x * x + y * y);
|
||
|
angles.x = std::atan2(sinr_cosp, cosr_cosp);
|
||
|
|
||
|
// pitch (y-axis rotation)
|
||
|
const float sinp = 2 * (w * y - z * x);
|
||
|
|
||
|
if (std::abs(sinp) >= 1) {
|
||
|
angles.y = std::copysign(3.14 / 2, sinp); // use 90 degrees if out of range
|
||
|
}
|
||
|
else {
|
||
|
angles.y = std::asin(sinp);
|
||
|
}
|
||
|
|
||
|
// yaw (z-axis rotation)
|
||
|
const float siny_cosp = 2 * (w * z + x * y);
|
||
|
const float cosy_cosp = 1 - 2 * (y * y + z * z);
|
||
|
angles.z = std::atan2(siny_cosp, cosy_cosp);
|
||
|
|
||
|
return angles;
|
||
|
}
|
||
|
|
||
|
// MARK: Operators
|
||
|
|
||
|
//! Operator to check for equality
|
||
|
bool NiQuaternion::operator==(const NiQuaternion& rot) const {
|
||
|
return rot.x == this->x && rot.y == this->y && rot.z == this->z && rot.w == this->w;
|
||
|
}
|
||
|
|
||
|
//! Operator to check for inequality
|
||
|
bool NiQuaternion::operator!=(const NiQuaternion& rot) const {
|
||
|
return !(*this == rot);
|
||
|
}
|
||
|
|
||
|
|
||
|
// MARK: Helper Functions
|
||
|
|
||
|
//! Look from a specific point in space to another point in space
|
||
|
NiQuaternion NiQuaternion::LookAt(const NiPoint3& sourcePoint, const NiPoint3& destPoint) {
|
||
|
//To make sure we don't orient around the X/Z axis:
|
||
|
NiPoint3 source = sourcePoint;
|
||
|
NiPoint3 dest = destPoint;
|
||
|
source.y = 0.0f;
|
||
|
dest.y = 0.0f;
|
||
|
|
||
|
NiPoint3 forwardVector = NiPoint3(dest - source).Unitize();
|
||
|
|
||
|
NiPoint3 posZ = NiPoint3::UNIT_Z;
|
||
|
NiPoint3 vecA = posZ.CrossProduct(forwardVector).Unitize();
|
||
|
|
||
|
float dot = posZ.DotProduct(forwardVector);
|
||
|
float rotAngle = static_cast<float>(acos(dot));
|
||
|
|
||
|
NiPoint3 vecB = vecA.CrossProduct(posZ);
|
||
|
|
||
|
if (vecB.DotProduct(forwardVector) < 0) rotAngle = -rotAngle;
|
||
|
return NiQuaternion::CreateFromAxisAngle(vecA, rotAngle);
|
||
|
}
|
||
|
|
||
|
NiQuaternion NiQuaternion::LookAtUnlocked(const NiPoint3& sourcePoint, const NiPoint3& destPoint)
|
||
|
{
|
||
|
NiPoint3 forwardVector = NiPoint3(destPoint - sourcePoint).Unitize();
|
||
|
|
||
|
NiPoint3 posZ = NiPoint3::UNIT_Z;
|
||
|
NiPoint3 vecA = posZ.CrossProduct(forwardVector).Unitize();
|
||
|
|
||
|
float dot = posZ.DotProduct(forwardVector);
|
||
|
float rotAngle = static_cast<float>(acos(dot));
|
||
|
|
||
|
NiPoint3 vecB = vecA.CrossProduct(posZ);
|
||
|
|
||
|
if (vecB.DotProduct(forwardVector) < 0) rotAngle = -rotAngle;
|
||
|
return NiQuaternion::CreateFromAxisAngle(vecA, rotAngle);
|
||
|
}
|
||
|
|
||
|
//! Creates a Quaternion from a specific axis and angle relative to that axis
|
||
|
NiQuaternion NiQuaternion::CreateFromAxisAngle(const Vector3& axis, float angle) {
|
||
|
float halfAngle = angle * 0.5f;
|
||
|
float s = static_cast<float>(sin(halfAngle));
|
||
|
|
||
|
NiQuaternion q;
|
||
|
q.x = axis.GetX() * s;
|
||
|
q.y = axis.GetY() * s;
|
||
|
q.z = axis.GetZ() * s;
|
||
|
q.w = static_cast<float>(cos(halfAngle));
|
||
|
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
NiQuaternion NiQuaternion::FromEulerAngles(const NiPoint3& eulerAngles)
|
||
|
{
|
||
|
// Abbreviations for the various angular functions
|
||
|
float cy = cos(eulerAngles.z * 0.5);
|
||
|
float sy = sin(eulerAngles.z * 0.5);
|
||
|
float cp = cos(eulerAngles.y * 0.5);
|
||
|
float sp = sin(eulerAngles.y * 0.5);
|
||
|
float cr = cos(eulerAngles.x * 0.5);
|
||
|
float sr = sin(eulerAngles.x * 0.5);
|
||
|
|
||
|
NiQuaternion q;
|
||
|
q.w = cr * cp * cy + sr * sp * sy;
|
||
|
q.x = sr * cp * cy - cr * sp * sy;
|
||
|
q.y = cr * sp * cy + sr * cp * sy;
|
||
|
q.z = cr * cp * sy - sr * sp * cy;
|
||
|
|
||
|
return q;
|
||
|
}
|