DarkflameServer/thirdparty/raknet/Source/RSACrypt.h

1259 lines
22 KiB
C
Raw Permalink Normal View History

///
/// \brief \b [Internal] SHA-1 computation class
///
/// Performant RSA en/decryption with 256-bit to 16384-bit modulus
///
/// catid(cat02e@fsu.edu)
///
/// 7/30/2004 Fixed VS6 compat
/// 7/26/2004 Now internally generates private keys
/// simpleModExp() is faster for encryption than MontyModExp
/// CRT-MontyModExp is faster for decryption than CRT-SimpleModExp
/// 7/25/2004 Implemented Montgomery modular exponentation
/// Implemented CRT modular exponentation optimization
/// 7/21/2004 Did some pre-lim coding
///
/// Best performance on my 1.8 GHz P4 (mobile):
/// 1024-bit generate key : 30 seconds
/// 1024-bit set private key : 100 ms (pre-compute this step)
/// 1024-bit encryption : 200 usec
/// 1024-bit decryption : 400 ms
///
/// \todo There's a bug in MonModExp() that restricts us to k-1 bits
///
/// Tabs: 4 spaces
/// Dist: public
#ifndef RSACRYPT_H
#define RSACRYPT_H
#if !defined(_XBOX360) && !defined(_WIN32_WCE)
#define RSASUPPORTGENPRIME
#include "Export.h"
/// Can't go under 256 or you'll need to disable the USEASSEMBLY macro in bigtypes.h
/// That's because the assembly assumes at least 128-bit data to work on
/// #define RSA_BIT_SIZE big::u512
#define RSA_BIT_SIZE big::u256
#include "RakMemoryOverride.h"
#include "BigTypes.h"
#include "Rand.h" //Giblet - added missing include for randomMT()
#ifdef _MSC_VER
#pragma warning( push )
#endif
namespace big
{
using namespace cat;
// r = x^y Mod n (fast for small y)
BIGONETYPE void simpleModExp( T &x0, T &y0, T &n0, T &r0 )
{
BIGDOUBLESIZE( T, x );
BIGDOUBLESIZE( T, y );
BIGDOUBLESIZE( T, n );
BIGDOUBLESIZE( T, r );
usetlow( x, x0 );
usetlow( y, y0 );
usetlow( n, n0 );
usetw( r, 1 );
umodulo( x, n, x );
u32 squares = 0;
for ( u32 ii = 0; ii < BIGWORDCOUNT( T ); ++ii )
{
word y_i = y[ ii ];
u32 ctr = WORDBITS;
while ( y_i )
{
if ( y_i & 1 )
{
if ( squares )
do
{
usquare( x );
umodulo( x, n, x );
}
while ( --squares );
umultiply( r, x, r );
umodulo( r, n, r );
}
y_i >>= 1;
++squares;
--ctr;
}
squares += ctr;
}
takelow( r0, r );
}
// computes Rn = 2^k (mod n), n < 2^k
BIGONETYPE void rModn( T &n, T &Rn )
{
BIGDOUBLESIZE( T, dR );
BIGDOUBLESIZE( T, dn );
BIGDOUBLESIZE( T, dRn );
T one;
// dR = 2^k
usetw( one, 1 );
sethigh( dR, one );
// Rn = 2^k (mod n)
usetlow( dn, n );
umodulo( dR, dn, dRn );
takelow( Rn, dRn );
}
// computes c = GCD(a, b)
BIGONETYPE void GCD( T &a0, T &b0, T &c )
{
T a;
umodulo( a0, b0, c );
if ( isZero( c ) )
{
set ( c, b0 )
;
return ;
}
umodulo( b0, c, a );
if ( isZero( a ) )
return ;
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( true )
{
umodulo( c, a, c );
if ( isZero( c ) )
{
set ( c, a )
;
return ;
}
umodulo( a, c, a );
if ( isZero( a ) )
return ;
}
}
// directly computes x = c - a * b (mod n) > 0, c < n
BIGONETYPE void SubMulMod( T &a, T &b, T &c, T &n, T &x )
{
BIGDOUBLESIZE( T, da );
BIGDOUBLESIZE( T, dn );
T y;
// y = a b (mod n)
usetlow( da, a );
umultiply( da, b );
usetlow( dn, n );
umodulo( da, dn, da );
takelow( y, da );
// x = (c - y) (mod n) > 0
set ( x, c )
;
if ( ugreater( c, y ) )
{
subtract( x, y );
}
else
{
subtract( x, y );
add ( x, n )
;
}
}
/*
directly compute a' s.t. a' a - b' b = 1
b = b0 = n0
rp = a'
a = 2^k
a > b > 0
GCD(a, b) = 1 (b odd)
Trying to keep everything positive
*/
BIGONETYPE void computeRinverse( T &n0, T &rp )
{
T x0, x1, x2, a, b, q;
//x[0] = 1
usetw( x0, 1 );
// a = 2^k (mod b0)
rModn( n0, a );
// {q, b} = b0 / a
udivide( n0, a, q, b );
// if b = 0, return x[0]
if ( isZero( b ) )
{
set ( rp, x0 )
;
return ;
}
// x[1] = -q (mod b0) = b0 - q, q <= b0
set ( x1, n0 )
;
subtract( x1, q );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[1]
if ( isZero( a ) )
{
set ( rp, x1 )
;
return ;
}
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( true )
{
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod( q, x1, x0, n0, x2 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[2]
if ( isZero( b ) )
{
set ( rp, x2 )
;
return ;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod( q, x2, x1, n0, x0 );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[0]
if ( isZero( a ) )
{
set ( rp, x0 )
;
return ;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod( q, x0, x2, n0, x1 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[1]
if ( isZero( b ) )
{
set ( rp, x1 )
;
return ;
}
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod( q, x1, x0, n0, x2 );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[2]
if ( isZero( a ) )
{
set ( rp, x2 )
;
return ;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod( q, x2, x1, n0, x0 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[0]
if ( isZero( b ) )
{
set ( rp, x0 )
;
return ;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod( q, x0, x2, n0, x1 );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[1]
if ( isZero( a ) )
{
set ( rp, x1 )
;
return ;
}
}
}
/* BIGONETYPE void computeRinverse2(T &_n0, T &_rp)
{
//T x0, x1, x2, a, b, q;
BIGDOUBLESIZE(T, x0);
BIGDOUBLESIZE(T, x1);
BIGDOUBLESIZE(T, x2);
BIGDOUBLESIZE(T, a);
BIGDOUBLESIZE(T, b);
BIGDOUBLESIZE(T, q);
BIGDOUBLESIZE(T, n0);
BIGDOUBLESIZE(T, rp);
usetlow(n0, _n0);
usetlow(rp, _rp);
std::string old;
//x[0] = 1
usetw(x0, 1);
T _a;
// a = 2^k (mod b0)
rModn(_n0, _a);
RECORD("TEST") << "a=" << toString(a, false) << " = 2^k (mod " << toString(n0, false) << ")";
usetlow(a, _a);
// {q, b} = b0 / a
udivide(n0, a, q, b);
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b, false) << "} = n0=" << toString(n0, false) << " / a=" << toString(a, false);
// if b = 0, return x[0]
if (isZero(b))
{
RECORD("TEST") << "b == 0, Returning x[0]";
set(rp, x0);
takelow(_rp, rp);
return;
}
// x[1] = -q (mod b0)
negate(q);
smodulo(q, n0, x1);
if (BIGHIGHBIT(x1))
add(x1, n0); // q > 0
RECORD("TEST") << "x1=" << toString(x1, false) << " = q=" << toString(q, false) << " (mod n0=" << toString(n0, false) << ")";
// {q, a} = a / b
old = toString(a, false);
udivide(a, b, q, a);
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
// if a = 0, return x[1]
if (isZero(a))
{
RECORD("TEST") << "a == 0, Returning x[1]";
set(rp, x1);
takelow(_rp, rp);
return;
}
RECORD("TEST") << "Entering loop...";
while (true)
{
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod(q, x1, x0, n0, x2);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, b} = b / a
old = toString(b);
udivide(b, a, q, b);
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
// if b = 0, return x[2]
if (isZero(b))
{
RECORD("TEST") << "b == 0, Returning x[2]";
set(rp, x2);
takelow(_rp, rp);
return;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod(q, x2, x1, n0, x0);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, a} = a / b
old = toString(a, false);
udivide(a, b, q, a);
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
// if a = 0, return x[0]
if (isZero(a))
{
RECORD("TEST") << "a == 0, Returning x[0]";
set(rp, x0);
takelow(_rp, rp);
return;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod(q, x0, x2, n0, x1);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, b} = b / a
old = toString(b);
udivide(b, a, q, b);
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
// if b = 0, return x[1]
if (isZero(b))
{
RECORD("TEST") << "b == 0, Returning x[1]";
set(rp, x1);
takelow(_rp, rp);
return;
}
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod(q, x1, x0, n0, x2);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, a} = a / b
old = toString(a, false);
udivide(a, b, q, a);
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
// if a = 0, return x[2]
if (isZero(a))
{
RECORD("TEST") << "a == 0, Returning x[2]";
set(rp, x2);
takelow(_rp, rp);
return;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod(q, x2, x1, n0, x0);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, b} = b / a
old = toString(b);
udivide(b, a, q, b);
RECORD("TEST") << "{q=" << toString(q, false) << ", b=" << toString(b) << "} = b=" << old << " / a=" << toString(a, false);
// if b = 0, return x[0]
if (isZero(b))
{
RECORD("TEST") << "b == 0, Returning x[0]";
set(rp, x0);
takelow(_rp, rp);
return;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod(q, x0, x2, n0, x1);
RECORD("TEST") << "x[0] = " << toString(x0, false);
RECORD("TEST") << "x[1] = " << toString(x1, false);
RECORD("TEST") << "x[2] = " << toString(x2, false);
// {q, a} = a / b
old = toString(a, false);
udivide(a, b, q, a);
RECORD("TEST") << "{q=" << toString(q, false) << ", a=" << toString(a, false) << "} = a=" << old << " / b=" << toString(b);
// if a = 0, return x[1]
if (isZero(a))
{
RECORD("TEST") << "a == 0, Returning x[1]";
set(rp, x1);
takelow(_rp, rp);
return;
}
}
}
*/
// directly compute a^-1 s.t. a^-1 a (mod b) = 1, a < b, GCD(a, b)
BIGONETYPE void computeModularInverse( T &a0, T &b0, T &ap )
{
T x0, x1, x2;
T a, b, q;
// x[2] = 1
usetw( x2, 1 );
// {q, b} = b0 / a0
udivide( b0, a0, q, b );
// x[0] = -q (mod b0) = b0 - q, q <= b0
set ( x0, b0 )
;
subtract( x0, q );
set ( a, a0 )
;
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( true )
{
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[0]
if ( isZero( a ) )
{
set ( ap, x0 )
;
return ;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod( x0, q, x2, b0, x1 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[1]
if ( isZero( b ) )
{
set ( ap, x1 )
;
return ;
}
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod( x1, q, x0, b0, x2 );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[2]
if ( isZero( a ) )
{
set ( ap, x2 )
;
return ;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod( x2, q, x1, b0, x0 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[0]
if ( isZero( b ) )
{
set ( ap, x0 )
;
return ;
}
// x[1] = x[2] - x[0] * q (mod b0)
SubMulMod( x0, q, x2, b0, x1 );
// {q, a} = a / b
udivide( a, b, q, a );
// if a = 0, return x[1]
if ( isZero( a ) )
{
set ( ap, x1 )
;
return ;
}
// x[2] = x[0] - x[1] * q (mod b0)
SubMulMod( x1, q, x0, b0, x2 );
// {q, b} = b / a
udivide( b, a, q, b );
// if b = 0, return x[2]
if ( isZero( b ) )
{
set ( ap, x2 )
;
return ;
}
// x[0] = x[1] - x[2] * q (mod b0)
SubMulMod( x2, q, x1, b0, x0 );
}
}
// indirectly computes n' s.t. 1 = r' r - n' n = GCD(r, n)
BIGONETYPE void computeNRinverse( T &n0, T &np )
{
BIGDOUBLESIZE( T, r );
BIGDOUBLESIZE( T, n );
// r' = (1 + n' n) / r
computeRinverse( n0, np );
// n' = (r' r - 1) / n
sethigh( r, np ); // special case of r = 2^k
decrement( r );
usetlow( n, n0 );
udivide( r, n, n, r );
takelow( np, n );
}
/*
// indirectly computes n' s.t. 1 = r' r - n' n = GCD(r, n)
BIGONETYPE void computeNRinverse2(T &n0, T &np)
{
BIGDOUBLESIZE(T, r);
BIGDOUBLESIZE(T, n);
// r' = (1 + n' n) / r
computeRinverse2(n0, np);
// n' = (r' r - 1) / n
sethigh(r, np); // special case of r = 2^k
decrement(r);
usetlow(n, n0);
udivide(r, n, n, r);
takelow(np, n);
}
*/
// Montgomery product u = a * b (mod n)
BIGONETYPE void MonPro( T &ap, T &bp, T &n, T &np, T &u_out )
{
BIGDOUBLESIZE( T, t );
BIGDOUBLESIZE( T, u );
T m;
// t = a' b'
umultiply( ap, bp, t );
// m = (low half of t)*np (mod r)
takelow( m, t );
umultiply( m, np );
// u = (t + m*n), u_out = u / r = high half of u
umultiply( m, n, u );
add ( u, t )
;
takehigh( u_out, u );
// if u >= n, return u - n, else u
if ( ugreaterOrEqual( u_out, n ) )
subtract( u_out, n );
}
// indirectly calculates x = M^e (mod n)
BIGONETYPE void MonModExp( T &x, T &M, T &e, T &n, T &np, T &xp0 )
{
// x' = xp0
set ( x, xp0 )
;
// find M' = M r (mod n)
BIGDOUBLESIZE( T, dM );
BIGDOUBLESIZE( T, dn );
T Mp;
sethigh( dM, M ); // dM = M r
usetlow( dn, n );
umodulo( dM, dn, dM ); // dM = dM (mod n)
takelow( Mp, dM ); // M' = M r (mod n)
/* i may be wrong, but it seems to me that the squaring
results in a constant until we hit the first set bit
this could save a lot of time, but it needs to be proven
*/
s32 ii, bc;
word e_i;
// for i = k - 1 down to 0 do
for ( ii = BIGWORDCOUNT( T ) - 1; ii >= 0; --ii )
{
e_i = e[ ii ];
bc = WORDBITS;
while ( bc-- )
{
// if e_i = 1, x = MonPro(M', x')
if ( e_i & WORDHIGHBIT )
goto start_squaring;
e_i <<= 1;
}
}
for ( ; ii >= 0; --ii )
{
e_i = e[ ii ];
bc = WORDBITS;
while ( bc-- )
{
// x' = MonPro(x', x')
MonPro( x, x, n, np, x );
// if e_i = 1, x = MonPro(M', x')
if ( e_i & WORDHIGHBIT )
{
start_squaring:
MonPro( Mp, x, n, np, x );
}
e_i <<= 1;
}
}
// x = MonPro(x', 1)
T one;
usetw( one, 1 );
MonPro( x, one, n, np, x );
}
// indirectly calculates x = C ^ d (mod n) using the Chinese Remainder Thm
BIGTWOTYPES void CRTModExp( Bigger &x, Bigger &C, Bigger &d, T &p, T &q, T &pInverse, T &pnp, T &pxp, T &qnp, T &qxp )
{
(void) qxp;
(void) pxp;
(void) pnp;
(void) qnp;
// d1 = d mod (p - 1)
Bigger dd1;
T d1;
usetlow( dd1, p );
decrement( dd1 );
umodulo( d, dd1, dd1 );
takelow( d1, dd1 );
// M1 = C1^d1 (mod p)
Bigger dp, dC1;
T M1, C1;
usetlow( dp, p );
umodulo( C, dp, dC1 );
takelow( C1, dC1 );
simpleModExp( C1, d1, p, M1 );
//MonModExp(M1, C1, d1, p, pnp, pxp);
// d2 = d mod (q - 1)
Bigger dd2;
T d2;
usetlow( dd2, q );
decrement( dd2 );
umodulo( d, dd2, dd2 );
takelow( d2, dd2 );
// M2 = C2^d2 (mod q)
Bigger dq, dC2;
T M2, C2;
usetlow( dq, q );
umodulo( C, dq, dC2 );
takelow( C2, dC2 );
simpleModExp( C2, d2, q, M2 );
//MonModExp(M2, C2, d2, q, qnp, qxp);
// x = M1 + p * ((M2 - M1)(p^-1 mod q) mod q)
if ( ugreater( M2, M1 ) )
{
subtract( M2, M1 );
}
else
{
subtract( M2, M1 );
add ( M2, q )
;
}
// x = M1 + p * (( M2 )(p^-1 mod q) mod q)
umultiply( M2, pInverse, x );
// x = M1 + p * (( x ) mod q)
umodulo( x, dq, x );
// x = M1 + p * ( x )
umultiply( x, dp );
// x = M1 + ( x )
Bigger dM1;
usetlow( dM1, M1 );
// x = ( dM1 ) + ( x )
add ( x, dM1 )
;
}
// generates a suitable public exponent s.t. 4 < e << phi, GCD(e, phi) = 1
BIGONETYPE void computePublicExponent( T &phi, T &e )
{
T r, one, two;
usetw( one, 1 );
usetw( two, 2 );
usetw( e, 65537 - 2 );
if ( ugreater( e, phi ) )
usetw( e, 5 - 2 );
do
{
add ( e, two )
;
GCD( phi, e, r );
}
while ( !equal( r, one ) );
}
// directly computes private exponent
BIGONETYPE void computePrivateExponent( T &e, T &phi, T &d )
{
// d = e^-1 (mod phi), 1 < e << phi
computeModularInverse( e, phi, d );
}
#ifdef RSASUPPORTGENPRIME
static const u16 PRIME_TABLE[ 256 ] =
{
3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367,
373, 379, 383, 389, 397, 401, 409, 419,
421, 431, 433, 439, 443, 449, 457, 461,
463, 467, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659, 661,
673, 677, 683, 691, 701, 709, 719, 727,
733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883,
887, 907, 911, 919, 929, 937, 941, 947,
953, 967, 971, 977, 983, 991, 997, 1009,
1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051,
1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103,
1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171,
1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229,
1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327,
1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427,
1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471,
1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579,
1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621
};
/*modified Rabin-Miller primality test (added small primes)
When picking a value for insurance, note that the probability of failure
of the test to detect a composite number is at most 4^(-insurance), so:
insurance max. probability of failure
3 1.56%
4 0.39%
5 0.098% <-- default
6 0.024%
...
*/
BIGONETYPE bool RabinMillerPrimalityTest( T &n, u32 insurance )
{
// check divisibility by small primes <= 1621 (speeds up computation)
T temp;
for ( u32 ii = 0; ii < 256; ++ii )
{
usetw( temp, PRIME_TABLE[ ii++ ] );
umodulo( n, temp, temp );
if ( isZero( temp ) )
return false;
}
// n1 = n - 1
T n1;
set ( n1, n )
;
decrement( n1 );
// write r 2^s = n - 1, r is odd
T r;
u32 s = 0;
set ( r, n1 )
;
while ( !( r[ 0 ] & 1 ) )
{
ushiftRight1( r );
++s;
}
// one = 1
T one;
usetw( one, 1 );
// cache n -> dn
BIGDOUBLESIZE( T, dy );
BIGDOUBLESIZE( T, dn );
usetlow( dn, n );
while ( insurance-- )
{
// choose random integer a s.t. 1 < a < n - 1
T a;
int index;
for ( index = 0; index < (int) sizeof( a ) / (int) sizeof( a[ 0 ] ); index++ )
a[ index ] = randomMT();
umodulo( a, n1, a );
// compute y = a ^ r (mod n)
T y;
simpleModExp( a, r, n, y );
if ( !equal( y, one ) && !equal( y, n1 ) )
{
u32 j = s;
while ( ( j-- > 1 ) && !equal( y, n1 ) )
{
umultiply( y, y, dy );
umodulo( dy, dn, dy );
takelow( y, dy );
if ( equal( y, one ) )
return false;
}
if ( !equal( y, n1 ) )
return false;
}
}
return true;
}
// generates a strong pseudo-prime
BIGONETYPE void generateStrongPseudoPrime( T &n )
{
do
{
int index;
for ( index = 0; index < (int) sizeof( n ) / (int) sizeof( n[ 0 ] ); index++ )
n[ index ] = randomMT();
n[ BIGWORDCOUNT( T ) - 1 ] |= WORDHIGHBIT;
//n[BIGWORDCOUNT(T) - 1] &= ~WORDHIGHBIT; n[BIGWORDCOUNT(T) - 1] |= WORDHIGHBIT >> 1;
n[ 0 ] |= 1;
}
while ( !RabinMillerPrimalityTest( n, 5 ) );
}
#endif // RSASUPPORTGENPRIME
//////// RSACrypt class ////////
BIGONETYPE class RAK_DLL_EXPORT RSACrypt : public RakNet::RakMemoryOverride
{
// public key
T e, n;
T np, xp;
// private key
bool factorsAvailable;
T d, phi;
BIGHALFSIZE( T, p );
BIGHALFSIZE( T, pnp );
BIGHALFSIZE( T, pxp );
BIGHALFSIZE( T, q );
BIGHALFSIZE( T, qnp );
BIGHALFSIZE( T, qxp );
BIGHALFSIZE( T, pInverse );
public:
RSACrypt()
{
reset();
}
~RSACrypt()
{
reset();
}
public:
void reset()
{
zero( d );
zero( p );
zero( q );
zero( pInverse );
factorsAvailable = false;
}
#ifdef RSASUPPORTGENPRIME
void generateKeys()
{
BIGHALFSIZE( T, p0 );
BIGHALFSIZE( T, q0 );
generateStrongPseudoPrime( p0 );
generateStrongPseudoPrime( q0 );
setPrivateKey( p0, q0 );
}
#endif // RSASUPPORTGENPRIME
BIGSMALLTYPE void setPrivateKey( Smaller &c_p, Smaller &c_q )
{
factorsAvailable = true;
// re-order factors s.t. q > p
if ( ugreater( c_p, c_q ) )
{
set ( q, c_p )
;
set ( p, c_q )
;
}
else
{
set ( p, c_p )
;
set ( q, c_q )
;
}
// phi = (p - 1)(q - 1)
BIGHALFSIZE( T, p1 );
BIGHALFSIZE( T, q1 );
set ( p1, p )
;
decrement( p1 );
set ( q1, q )
;
decrement( q1 );
umultiply( p1, q1, phi );
// compute e
computePublicExponent( phi, e );
// compute d
computePrivateExponent( e, phi, d );
// compute p^-1 mod q
computeModularInverse( p, q, pInverse );
// compute n = pq
umultiply( p, q, n );
// find n'
computeNRinverse( n, np );
// x' = 1*r (mod n)
rModn( n, xp );
// find pn'
computeNRinverse( p, pnp );
// computeNRinverse2(p, pnp);
// px' = 1*r (mod p)
rModn( p, pxp );
// find qn'
computeNRinverse( q, qnp );
// qx' = 1*r (mod q)
rModn( q, qxp );
}
void setPublicKey( u32 c_e, T &c_n )
{
reset(); // in case we knew a private key
usetw( e, c_e );
set ( n, c_n )
;
// find n'
computeNRinverse( n, np );
// x' = 1*r (mod n)
rModn( n, xp );
}
public:
void getPublicKey( u32 &c_e, T &c_n )
{
c_e = e[ 0 ];
set ( c_n, n )
;
}
BIGSMALLTYPE void getPrivateKey( Smaller &c_p, Smaller &c_q )
{
set ( c_p, p )
;
set ( c_q, q )
;
}
public:
void encrypt( T &M, T &x )
{
if ( factorsAvailable )
CRTModExp( x, M, e, p, q, pInverse, pnp, pxp, qnp, qxp );
else
simpleModExp( M, e, n, x );
}
void decrypt( T &C, T &x )
{
if ( factorsAvailable )
CRTModExp( x, C, d, p, q, pInverse, pnp, pxp, qnp, qxp );
}
};
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif
#endif // #if !defined(_XBOX360) && !defined(_WIN32_WCE)
#endif // RSACRYPT_H