DarkflameServer/thirdparty/raknet/Source/DS_BinarySearchTree.h

1145 lines
31 KiB
C
Raw Permalink Normal View History

/// \file
/// \brief \b [Internal] A binary search tree, and an AVL balanced BST derivation.
///
/// This file is part of RakNet Copyright 2003 Kevin Jenkins.
///
/// Usage of RakNet is subject to the appropriate license agreement.
/// Creative Commons Licensees are subject to the
/// license found at
/// http://creativecommons.org/licenses/by-nc/2.5/
/// Single application licensees are subject to the license found at
/// http://www.jenkinssoftware.com/SingleApplicationLicense.html
/// Custom license users are subject to the terms therein.
/// GPL license users are subject to the GNU General Public
/// License as published by the Free
/// Software Foundation; either version 2 of the License, or (at your
/// option) any later version.
#ifndef __BINARY_SEARCH_TREE_H
#define __BINARY_SEARCH_TREE_H
#include "DS_QueueLinkedList.h"
#include "RakMemoryOverride.h"
#include "Export.h"
#ifdef _MSC_VER
#pragma warning( push )
#endif
/// The namespace DataStructures was only added to avoid compiler errors for commonly named data structures
/// As these data structures are stand-alone, you can use them outside of RakNet for your own projects if you wish.
namespace DataStructures
{
/**
* \brief A binary search tree and an AVL balanced binary search tree
*
* Initilize with the following structure
*
* BinarySearchTree<TYPE>
*
* OR
*
* AVLBalancedBinarySearchTree<TYPE>
*
* Use the AVL balanced tree if you want the tree to be balanced after every deletion and addition. This avoids the potential
* worst case scenario where ordered input to a binary search tree gives linear search time results. It's not needed
* if input will be evenly distributed, in which case the search time is O (log n). The search time for the AVL
* balanced binary tree is O (log n) irregardless of input.
*
* Has the following member functions
* unsigned int Height(<index>) - Returns the height of the tree at the optional specified starting index. Default is the root
* add(element) - adds an element to the BinarySearchTree
* bool del(element) - deletes the node containing element if the element is in the tree as defined by a comparison with the == operator. Returns true on success, false if the element is not found
* bool IsInelement) - returns true if element is in the tree as defined by a comparison with the == operator. Otherwise returns false
* DisplayInorder(array) - Fills an array with an inorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
* DisplayPreorder(array) - Fills an array with an preorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
* DisplayPostorder(array) - Fills an array with an postorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
* DisplayBreadthFirstSearch(array) - Fills an array with a breadth first search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!.
* clear - Destroys the tree. Same as calling the destructor
* unsigned int Height() - Returns the height of the tree
* unsigned int size() - returns the size of the BinarySearchTree
* GetPointerToNode(element) - returns a pointer to the comparision element in the tree, allowing for direct modification when necessary with complex data types.
* Be warned, it is possible to corrupt the tree if the element used for comparisons is modified. Returns NULL if the item is not found
*
*
* EXAMPLE
* @code
* BinarySearchTree<int> A;
* A.Add(10);
* A.Add(15);
* A.Add(5);
* int* array = new int [A.Size()];
* A.DisplayInorder(array);
* array[0]; // returns 5
* array[1]; // returns 10
* array[2]; // returns 15
* @endcode
* compress - reallocates memory to fit the number of elements. Best used when the number of elements decreases
*
* clear - empties the BinarySearchTree and returns storage
* The assignment and copy constructors are defined
*
* \note The template type must have the copy constructor and
* assignment operator defined and must work with >, <, and == All
* elements in the tree MUST be distinct The assignment operator is
* defined between BinarySearchTree and AVLBalancedBinarySearchTree
* as long as they are of the same template type. However, passing a
* BinarySearchTree to an AVLBalancedBinarySearchTree will lose its
* structure unless it happened to be AVL balanced to begin with
* Requires queue_linked_list.cpp for the breadth first search used
* in the copy constructor, overloaded assignment operator, and
* display_breadth_first_search.
*
*
*/
template <class BinarySearchTreeType>
class RAK_DLL_EXPORT BinarySearchTree : public RakNet::RakMemoryOverride
{
public:
struct node
{
BinarySearchTreeType* item;
node* left;
node* right;
};
BinarySearchTree();
virtual ~BinarySearchTree();
BinarySearchTree( const BinarySearchTree& original_type );
BinarySearchTree& operator= ( const BinarySearchTree& original_copy );
unsigned int Size( void );
void Clear( void );
unsigned int Height( node* starting_node = 0 );
node* Add ( const BinarySearchTreeType& input );
node* Del( const BinarySearchTreeType& input );
bool IsIn( const BinarySearchTreeType& input );
void DisplayInorder( BinarySearchTreeType* return_array );
void DisplayPreorder( BinarySearchTreeType* return_array );
void DisplayPostorder( BinarySearchTreeType* return_array );
void DisplayBreadthFirstSearch( BinarySearchTreeType* return_array );
BinarySearchTreeType*& GetPointerToNode( const BinarySearchTreeType& element );
protected:
node* root;
enum Direction_Types
{
NOT_FOUND, LEFT, RIGHT, ROOT
} direction;
unsigned int HeightRecursive( node* current );
unsigned int BinarySearchTree_size;
node*& Find( const BinarySearchTreeType& element, node** parent );
node*& FindParent( const BinarySearchTreeType& element );
void DisplayPostorderRecursive( node* current, BinarySearchTreeType* return_array, unsigned int& index );
void FixTree( node* current );
};
/// An AVLBalancedBinarySearchTree is a binary tree that is always balanced
template <class BinarySearchTreeType>
class RAK_DLL_EXPORT AVLBalancedBinarySearchTree : public BinarySearchTree<BinarySearchTreeType>
{
public:
AVLBalancedBinarySearchTree() {}
virtual ~AVLBalancedBinarySearchTree();
void Add ( const BinarySearchTreeType& input );
void Del( const BinarySearchTreeType& input );
BinarySearchTree<BinarySearchTreeType>& operator= ( BinarySearchTree<BinarySearchTreeType>& original_copy )
{
return BinarySearchTree<BinarySearchTreeType>::operator= ( original_copy );
}
private:
void BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce );
void RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C );
void RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* C );
void DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A );
void DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* A );
bool RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A );
bool LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A );
};
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce )
{
int left_height, right_height;
while ( current )
{
if ( current->left == 0 )
left_height = 0;
else
left_height = this->Height( current->left );
if ( current->right == 0 )
right_height = 0;
else
right_height = this->Height( current->right );
if ( right_height - left_height == 2 )
{
if ( this->RightHigher( current->right ) )
RotateLeft( current->right );
else
DoubleRotateLeft( current );
if ( rotateOnce )
break;
}
else
if ( right_height - left_height == -2 )
{
if ( this->LeftHigher( current->left ) )
RotateRight( current->left );
else
DoubleRotateRight( current );
if ( rotateOnce )
break;
}
if ( current == this->root )
break;
current = this->FindParent( *( current->item ) );
}
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input )
{
typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Add ( input );
BalanceTree( current, true );
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input )
{
typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Del( input );
this->BalanceTree( current, false );
}
template <class BinarySearchTreeType>
bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A )
{
if ( A == 0 )
return false;
return this->Height( A->right ) > this->Height( A->left );
}
template <class BinarySearchTreeType>
bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A )
{
if ( A == 0 )
return false;
return this->Height( A->left ) > this->Height( A->right );
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C )
{
typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D;
/*
RIGHT ROTATION
A = parent(b)
b= parent(c)
c = node to rotate around
A
| // Either direction
B
/ \
C
/ \
D
TO
A
| // Either Direction
C
/ \
B
/ \
D
<Leave all other branches branches AS-IS whether they point to another node or simply 0>
*/
B = this->FindParent( *( C->item ) );
A = this->FindParent( *( B->item ) );
D = C->right;
if ( A )
{
// Direction was set by the last find_parent call
if ( this->direction == this->LEFT )
A->left = C;
else
A->right = C;
}
else
this->root = C; // If B has no parent parent then B must have been the root node
B->left = D;
C->right = B;
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A )
{
// The left side of the left child must be higher for the tree to balance with a right rotation. If it isn't, rotate it left before the normal rotation so it is.
RotateLeft( A->left->right );
RotateRight( A->left );
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *C )
{
typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D;
/*
RIGHT ROTATION
A = parent(b)
b= parent(c)
c = node to rotate around
A
| // Either direction
B
/ \
C
/ \
D
TO
A
| // Either Direction
C
/ \
B
/ \
D
<Leave all other branches branches AS-IS whether they point to another node or simply 0>
*/
B = this->FindParent( *( C->item ) );
A = this->FindParent( *( B->item ) );
D = C->left;
if ( A )
{
// Direction was set by the last find_parent call
if ( this->direction == this->LEFT )
A->left = C;
else
A->right = C;
}
else
this->root = C; // If B has no parent parent then B must have been the root node
B->right = D;
C->left = B;
}
template <class BinarySearchTreeType>
void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *A )
{
// The left side of the right child must be higher for the tree to balance with a left rotation. If it isn't, rotate it right before the normal rotation so it is.
RotateRight( A->right->left );
RotateLeft( A->right );
}
template <class BinarySearchTreeType>
AVLBalancedBinarySearchTree<BinarySearchTreeType>::~AVLBalancedBinarySearchTree()
{
this->Clear();
}
template <class BinarySearchTreeType>
unsigned int BinarySearchTree<BinarySearchTreeType>::Size( void )
{
return BinarySearchTree_size;
}
template <class BinarySearchTreeType>
unsigned int BinarySearchTree<BinarySearchTreeType>::Height( typename BinarySearchTree::node* starting_node )
{
if ( BinarySearchTree_size == 0 || starting_node == 0 )
return 0;
else
return HeightRecursive( starting_node );
}
// Recursively return the height of a binary tree
template <class BinarySearchTreeType>
unsigned int BinarySearchTree<BinarySearchTreeType>::HeightRecursive( typename BinarySearchTree::node* current )
{
unsigned int left_height = 0, right_height = 0;
if ( ( current->left == 0 ) && ( current->right == 0 ) )
return 1; // Leaf
if ( current->left != 0 )
left_height = 1 + HeightRecursive( current->left );
if ( current->right != 0 )
right_height = 1 + HeightRecursive( current->right );
if ( left_height > right_height )
return left_height;
else
return right_height;
}
template <class BinarySearchTreeType>
BinarySearchTree<BinarySearchTreeType>::BinarySearchTree()
{
BinarySearchTree_size = 0;
root = 0;
}
template <class BinarySearchTreeType>
BinarySearchTree<BinarySearchTreeType>::~BinarySearchTree()
{
this->Clear();
}
template <class BinarySearchTreeType>
BinarySearchTreeType*& BinarySearchTree<BinarySearchTreeType>::GetPointerToNode( const BinarySearchTreeType& element )
{
static typename BinarySearchTree::node * tempnode;
static BinarySearchTreeType* dummyptr = 0;
tempnode = Find ( element, &tempnode );
if ( this->direction == this->NOT_FOUND )
return dummyptr;
return tempnode->item;
}
template <class BinarySearchTreeType>
typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::Find( const BinarySearchTreeType& element, typename BinarySearchTree<BinarySearchTreeType>::node** parent )
{
static typename BinarySearchTree::node * current;
current = this->root;
*parent = 0;
this->direction = this->ROOT;
if ( BinarySearchTree_size == 0 )
{
this->direction = this->NOT_FOUND;
return current = 0;
}
// Check if the item is at the root
if ( element == *( current->item ) )
{
this->direction = this->ROOT;
return current;
}
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( true )
{
// Move pointer
if ( element < *( current->item ) )
{
*parent = current;
this->direction = this->LEFT;
current = current->left;
}
else
if ( element > *( current->item ) )
{
*parent = current;
this->direction = this->RIGHT;
current = current->right;
}
if ( current == 0 )
break;
// Check if new position holds the item
if ( element == *( current->item ) )
{
return current;
}
}
this->direction = this->NOT_FOUND;
return current = 0;
}
template <class BinarySearchTreeType>
typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::FindParent( const BinarySearchTreeType& element )
{
static typename BinarySearchTree::node * parent;
Find ( element, &parent );
return parent;
}
// Performs a series of value swaps starting with current to fix the tree if needed
template <class BinarySearchTreeType>
void BinarySearchTree<BinarySearchTreeType>::FixTree( typename BinarySearchTree::node* current )
{
BinarySearchTreeType temp;
while ( 1 )
{
if ( ( ( current->left ) != 0 ) && ( *( current->item ) < *( current->left->item ) ) )
{
// Swap the current value with the one to the left
temp = *( current->left->item );
*( current->left->item ) = *( current->item );
*( current->item ) = temp;
current = current->left;
}
else
if ( ( ( current->right ) != 0 ) && ( *( current->item ) > *( current->right->item ) ) )
{
// Swap the current value with the one to the right
temp = *( current->right->item );
*( current->right->item ) = *( current->item );
*( current->item ) = temp;
current = current->right;
}
else
break; // current points to the right place so quit
}
}
template <class BinarySearchTreeType>
typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input )
{
typename BinarySearchTree::node * node_to_delete, *current, *parent;
if ( BinarySearchTree_size == 0 )
return 0;
if ( BinarySearchTree_size == 1 )
{
Clear();
return 0;
}
node_to_delete = Find( input, &parent );
if ( direction == NOT_FOUND )
return 0; // Couldn't find the element
current = node_to_delete;
// Replace the deleted node with the appropriate value
if ( ( current->right ) == 0 && ( current->left ) == 0 ) // Leaf node, just remove it
{
if ( parent )
{
if ( direction == LEFT )
parent->left = 0;
else
parent->right = 0;
}
delete node_to_delete->item;
delete node_to_delete;
BinarySearchTree_size--;
return parent;
}
else
if ( ( current->right ) != 0 && ( current->left ) == 0 ) // Node has only one child, delete it and cause the parent to point to that child
{
if ( parent )
{
if ( direction == RIGHT )
parent->right = current->right;
else
parent->left = current->right;
}
else
root = current->right; // Without a parent this must be the root node
delete node_to_delete->item;
delete node_to_delete;
BinarySearchTree_size--;
return parent;
}
else
if ( ( current->right ) == 0 && ( current->left ) != 0 ) // Node has only one child, delete it and cause the parent to point to that child
{
if ( parent )
{
if ( direction == RIGHT )
parent->right = current->left;
else
parent->left = current->left;
}
else
root = current->left; // Without a parent this must be the root node
delete node_to_delete->item;
delete node_to_delete;
BinarySearchTree_size--;
return parent;
}
else // Go right, then as left as far as you can
{
parent = current;
direction = RIGHT;
current = current->right; // Must have a right branch because the if statements above indicated that it has 2 branches
while ( current->left )
{
direction = LEFT;
parent = current;
current = current->left;
}
// Replace the value held by the node to delete with the value pointed to by current;
*( node_to_delete->item ) = *( current->item );
// Delete current.
// If it is a leaf node just delete it
if ( current->right == 0 )
{
if ( direction == RIGHT )
parent->right = 0;
else
parent->left = 0;
delete current->item;
delete current;
BinarySearchTree_size--;
return parent;
}
else
{
// Skip this node and make its parent point to its right branch
if ( direction == RIGHT )
parent->right = current->right;
else
parent->left = current->right;
delete current->item;
delete current;
BinarySearchTree_size--;
return parent;
}
}
}
template <class BinarySearchTreeType>
typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input )
{
typename BinarySearchTree::node * current, *parent;
// Add the new element to the tree according to the following alogrithm:
// 1. If the current node is empty add the new leaf
// 2. If the element is less than the current node then go down the left branch
// 3. If the element is greater than the current node then go down the right branch
if ( BinarySearchTree_size == 0 )
{
BinarySearchTree_size = 1;
root = new typename BinarySearchTree::node;
root->item = new BinarySearchTreeType;
*( root->item ) = input;
root->left = 0;
root->right = 0;
return root;
}
else
{
// start at the root
current = parent = root;
#ifdef _MSC_VER
#pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant
#endif
while ( true ) // This loop traverses the tree to find a spot for insertion
{
if ( input < *( current->item ) )
{
if ( current->left == 0 )
{
current->left = new typename BinarySearchTree::node;
current->left->item = new BinarySearchTreeType;
current = current->left;
current->left = 0;
current->right = 0;
*( current->item ) = input;
BinarySearchTree_size++;
return current;
}
else
{
parent = current;
current = current->left;
}
}
else
if ( input > *( current->item ) )
{
if ( current->right == 0 )
{
current->right = new typename BinarySearchTree::node;
current->right->item = new BinarySearchTreeType;
current = current->right;
current->left = 0;
current->right = 0;
*( current->item ) = input;
BinarySearchTree_size++;
return current;
}
else
{
parent = current;
current = current->right;
}
}
else
return 0; // ((input == current->item) == true) which is not allowed since the tree only takes discrete values. Do nothing
}
}
}
template <class BinarySearchTreeType>
bool BinarySearchTree<BinarySearchTreeType>::IsIn( const BinarySearchTreeType& input )
{
typename BinarySearchTree::node * parent;
find( input, &parent );
if ( direction != NOT_FOUND )
return true;
else
return false;
}
template <class BinarySearchTreeType>
void BinarySearchTree<BinarySearchTreeType>::DisplayInorder( BinarySearchTreeType* return_array )
{
typename BinarySearchTree::node * current, *parent;
bool just_printed = false;
unsigned int index = 0;
current = root;
if ( BinarySearchTree_size == 0 )
return ; // Do nothing for an empty tree
else
if ( BinarySearchTree_size == 1 )
{
return_array[ 0 ] = *( root->item );
return ;
}
direction = ROOT; // Reset the direction
while ( index != BinarySearchTree_size )
{
// direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes
if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) )
{
// Go left if the following 2 conditions are true
// I can go left
// I did not just move up from a right child
// I did not just move up from a left child
current = current->left;
direction = ROOT; // Reset the direction
}
else
if ( ( direction != RIGHT ) && ( just_printed == false ) )
{
// Otherwise, print the current node if the following 3 conditions are true:
// I did not just move up from a right child
// I did not print this ndoe last cycle
return_array[ index++ ] = *( current->item );
just_printed = true;
}
else
if ( ( current->right != 0 ) && ( direction != RIGHT ) )
{
// Otherwise, go right if the following 2 conditions are true
// I did not just move up from a right child
// I can go right
current = current->right;
direction = ROOT; // Reset the direction
just_printed = false;
}
else
{
// Otherwise I've done everything I can. Move up the tree one node
parent = FindParent( *( current->item ) );
current = parent;
just_printed = false;
}
}
}
template <class BinarySearchTreeType>
void BinarySearchTree<BinarySearchTreeType>::DisplayPreorder( BinarySearchTreeType* return_array )
{
typename BinarySearchTree::node * current, *parent;
unsigned int index = 0;
current = root;
if ( BinarySearchTree_size == 0 )
return ; // Do nothing for an empty tree
else
if ( BinarySearchTree_size == 1 )
{
return_array[ 0 ] = *( root->item );
return ;
}
direction = ROOT; // Reset the direction
return_array[ index++ ] = *( current->item );
while ( index != BinarySearchTree_size )
{
// direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes
if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) )
{
current = current->left;
direction = ROOT;
// Everytime you move a node print it
return_array[ index++ ] = *( current->item );
}
else
if ( ( current->right != 0 ) && ( direction != RIGHT ) )
{
current = current->right;
direction = ROOT;
// Everytime you move a node print it
return_array[ index++ ] = *( current->item );
}
else
{
// Otherwise I've done everything I can. Move up the tree one node
parent = FindParent( *( current->item ) );
current = parent;
}
}
}
template <class BinarySearchTreeType>
inline void BinarySearchTree<BinarySearchTreeType>::DisplayPostorder( BinarySearchTreeType* return_array )
{
unsigned int index = 0;
if ( BinarySearchTree_size == 0 )
return ; // Do nothing for an empty tree
else
if ( BinarySearchTree_size == 1 )
{
return_array[ 0 ] = *( root->item );
return ;
}
DisplayPostorderRecursive( root, return_array, index );
}
// Recursively do a postorder traversal
template <class BinarySearchTreeType>
void BinarySearchTree<BinarySearchTreeType>::DisplayPostorderRecursive( typename BinarySearchTree::node* current, BinarySearchTreeType* return_array, unsigned int& index )
{
if ( current->left != 0 )
DisplayPostorderRecursive( current->left, return_array, index );
if ( current->right != 0 )
DisplayPostorderRecursive( current->right, return_array, index );
return_array[ index++ ] = *( current->item );
}
template <class BinarySearchTreeType>
void BinarySearchTree<BinarySearchTreeType>::DisplayBreadthFirstSearch( BinarySearchTreeType* return_array )
{
typename BinarySearchTree::node * current;
unsigned int index = 0;
// Display the tree using a breadth first search
// Put the children of the current node into the queue
// Pop the queue, put its children into the queue, repeat until queue is empty
if ( BinarySearchTree_size == 0 )
return ; // Do nothing for an empty tree
else
if ( BinarySearchTree_size == 1 )
{
return_array[ 0 ] = *( root->item );
return ;
}
else
{
DataStructures::QueueLinkedList<node *> tree_queue;
// Add the root of the tree I am copying from
tree_queue.Push( root );
do
{
current = tree_queue.Pop();
return_array[ index++ ] = *( current->item );
// Add the child or children of the tree I am copying from to the queue
if ( current->left != 0 )
tree_queue.Push( current->left );
if ( current->right != 0 )
tree_queue.Push( current->right );
}
while ( tree_queue.Size() > 0 );
}
}
template <class BinarySearchTreeType>
BinarySearchTree<BinarySearchTreeType>::BinarySearchTree( const BinarySearchTree& original_copy )
{
typename BinarySearchTree::node * current;
// Copy the tree using a breadth first search
// Put the children of the current node into the queue
// Pop the queue, put its children into the queue, repeat until queue is empty
// This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored.
BinarySearchTree_size = 0;
root = 0;
if ( original_copy.BinarySearchTree_size == 0 )
{
BinarySearchTree_size = 0;
}
else
{
DataStructures::QueueLinkedList<node *> tree_queue;
// Add the root of the tree I am copying from
tree_queue.Push( original_copy.root );
do
{
current = tree_queue.Pop();
Add ( *( current->item ) )
;
// Add the child or children of the tree I am copying from to the queue
if ( current->left != 0 )
tree_queue.Push( current->left );
if ( current->right != 0 )
tree_queue.Push( current->right );
}
while ( tree_queue.Size() > 0 );
}
}
template <class BinarySearchTreeType>
BinarySearchTree<BinarySearchTreeType>& BinarySearchTree<BinarySearchTreeType>::operator= ( const BinarySearchTree& original_copy )
{
typename BinarySearchTree::node * current;
if ( ( &original_copy ) == this )
return *this;
Clear(); // Remove the current tree
// This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored.
BinarySearchTree_size = 0;
root = 0;
// Copy the tree using a breadth first search
// Put the children of the current node into the queue
// Pop the queue, put its children into the queue, repeat until queue is empty
if ( original_copy.BinarySearchTree_size == 0 )
{
BinarySearchTree_size = 0;
}
else
{
DataStructures::QueueLinkedList<node *> tree_queue;
// Add the root of the tree I am copying from
tree_queue.Push( original_copy.root );
do
{
current = tree_queue.Pop();
Add ( *( current->item ) )
;
// Add the child or children of the tree I am copying from to the queue
if ( current->left != 0 )
tree_queue.Push( current->left );
if ( current->right != 0 )
tree_queue.Push( current->right );
}
while ( tree_queue.Size() > 0 );
}
return *this;
}
template <class BinarySearchTreeType>
inline void BinarySearchTree<BinarySearchTreeType>::Clear ( void )
{
typename BinarySearchTree::node * current, *parent;
current = root;
while ( BinarySearchTree_size > 0 )
{
if ( BinarySearchTree_size == 1 )
{
delete root->item;
delete root;
root = 0;
BinarySearchTree_size = 0;
}
else
{
if ( current->left != 0 )
{
current = current->left;
}
else
if ( current->right != 0 )
{
current = current->right;
}
else // leaf
{
// Not root node so must have a parent
parent = FindParent( *( current->item ) );
if ( ( parent->left ) == current )
parent->left = 0;
else
parent->right = 0;
delete current->item;
delete current;
current = parent;
BinarySearchTree_size--;
}
}
}
}
} // End namespace
#endif
#ifdef _MSC_VER
#pragma warning( pop )
#endif