LookingGlass/client/spice/rsa.c

228 lines
5.9 KiB
C
Raw Normal View History

/*
Looking Glass - KVM FrameRelay (KVMFR) Client
Copyright (C) 2017 Geoffrey McRae <geoff@hostfission.com>
https://looking-glass.hostfission.com
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "rsa.h"
#include "debug.h"
#include <spice/protocol.h>
#include <malloc.h>
#include <string.h>
#if defined(USE_OPENSSL) && defined(USE_NETTLE)
#error "USE_OPENSSL and USE_GNUTLS are both defined"
#elif !defined(USE_OPENSSL) && !defined(USE_NETTLE)
#error "One of USE_OPENSSL or USE_GNUTLS must be defined"
#endif
#if defined(USE_OPENSSL)
#include <openssl/rsa.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#endif
#if defined(USE_NETTLE)
#include <stdlib.h>
#include <nettle/asn1.h>
#include <nettle/sha1.h>
#include <nettle/rsa.h>
#include <gmp.h>
#define KEY_SIZE (1024 / 8)
#define SHA1_HASH_LEN 20
#endif
#if defined(USE_NETTLE)
/* the below OAEP implementation is derived from the FreeTDS project */
static void memxor(uint8_t * a, const uint8_t * b, const unsigned int len)
{
for(unsigned int i = 0; i < len; ++i)
a[i] = a[i] ^ b[i];
}
static void sha1(uint8_t * hash, const uint8_t *data, unsigned int len)
{
struct sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, len, data);
sha1_digest(&ctx, SHA1_HASH_LEN, hash);
}
static void oaep_mask(uint8_t * dest, size_t dest_len, const uint8_t * mask, size_t mask_len)
{
uint8_t hash[SHA1_HASH_LEN];
uint8_t seed[mask_len + 4 ];
memcpy(seed, mask, mask_len);
for(unsigned int n = 0;; ++n)
{
(seed+mask_len)[0] = n >> 24;
(seed+mask_len)[1] = n >> 16;
(seed+mask_len)[2] = n >> 8;
(seed+mask_len)[3] = n >> 0;
sha1(hash, seed, sizeof(seed));
if (dest_len <= SHA1_HASH_LEN)
{
memxor(dest, hash, dest_len);
break;
}
memxor(dest, hash, SHA1_HASH_LEN);
dest += SHA1_HASH_LEN;
dest_len -= SHA1_HASH_LEN;
}
}
static bool oaep_pad(mpz_t m, unsigned int key_size, const uint8_t * message, unsigned int len)
{
if (len + SHA1_HASH_LEN * 2 + 2 > key_size)
{
DEBUG_ERROR("Message too long");
return false;
}
struct
{
uint8_t all[1];
uint8_t ros[SHA1_HASH_LEN];
uint8_t db [key_size - SHA1_HASH_LEN - 1];
} em;
memset(&em, 0, sizeof(em));
sha1(em.db, (uint8_t *)"", 0);
em.all[key_size - len - 1] = 0x1;
memcpy(em.all + (key_size - len), message, len);
/* we are not too worried about randomness since we are just making a local
* connection, should anyone use this code outside of LookingGlass please be
* sure to use something better such as `gnutls_rnd` */
for(int i = 0; i < SHA1_HASH_LEN; ++i)
em.ros[i] = rand() % 255;
const int db_len = key_size - SHA1_HASH_LEN - 1;
oaep_mask(em.db , db_len , em.ros, SHA1_HASH_LEN);
oaep_mask(em.ros, SHA1_HASH_LEN, em.db , db_len );
nettle_mpz_set_str_256_u(m, key_size, em.all);
return true;
}
#endif
bool spice_rsa_encrypt_password(uint8_t * pub_key, char * password, struct spice_password * result)
{
result->size = 0;
result->data = NULL;
#if defined(USE_OPENSSL)
BIO *bioKey = BIO_new(BIO_s_mem());
if (!bioKey)
{
DEBUG_ERROR("failed to allocate bioKey");
return false;
}
BIO_write(bioKey, pub_key, SPICE_TICKET_PUBKEY_BYTES);
EVP_PKEY *rsaKey = d2i_PUBKEY_bio(bioKey, NULL);
RSA *rsa = EVP_PKEY_get1_RSA(rsaKey);
result->size = RSA_size(rsa);
result->data = (char *)malloc(result->size);
if (RSA_public_encrypt(
strlen(password) + 1,
(uint8_t*)password,
(uint8_t*)result->data,
rsa,
RSA_PKCS1_OAEP_PADDING
) <= 0)
{
free(result->data);
result->size = 0;
result->data = NULL;
DEBUG_ERROR("rsa public encrypt failed");
EVP_PKEY_free(rsaKey);
BIO_free(bioKey);
return false;
}
EVP_PKEY_free(rsaKey);
BIO_free(bioKey);
return true;
#endif
#if defined(USE_NETTLE)
struct asn1_der_iterator der;
struct asn1_der_iterator j;
struct rsa_public_key pub;
if (asn1_der_iterator_first(&der, SPICE_TICKET_PUBKEY_BYTES, pub_key) == ASN1_ITERATOR_CONSTRUCTED
&& der.type == ASN1_SEQUENCE
&& asn1_der_decode_constructed_last(&der) == ASN1_ITERATOR_CONSTRUCTED
&& der.type == ASN1_SEQUENCE
&& asn1_der_decode_constructed(&der, &j) == ASN1_ITERATOR_PRIMITIVE
&& j.type == ASN1_IDENTIFIER
&& asn1_der_iterator_next(&der) == ASN1_ITERATOR_PRIMITIVE
&& der.type == ASN1_BITSTRING
&& asn1_der_decode_bitstring_last(&der))
{
if (j.length != 9)
{
DEBUG_ERROR("Invalid key, not RSA");
return false;
}
if (asn1_der_iterator_next(&j) == ASN1_ITERATOR_PRIMITIVE
&& j.type == ASN1_NULL
&& j.length == 0
&& asn1_der_iterator_next(&j) == ASN1_ITERATOR_END)
{
rsa_public_key_init(&pub);
if (!rsa_public_key_from_der_iterator(&pub, 0, &der))
{
DEBUG_ERROR("Unable to load public key from DER iterator");
rsa_public_key_clear(&pub);
return false;
}
}
}
mpz_t p;
mpz_init(p);
oaep_pad(p, pub.size, (uint8_t *)password, strlen(password)+1);
mpz_powm(p, p, pub.e, pub.n);
result->size = pub.size;
result->data = malloc(pub.size);
nettle_mpz_get_str_256(pub.size, (uint8_t *)result->data, p);
rsa_public_key_clear(&pub);
mpz_clear(p);
return true;
#endif
}
void spice_rsa_free_password(struct spice_password * pass)
{
free(pass->data);
pass->size = 0;
pass->data = NULL;
}