#include "MovementAIComponent.h" #include #include #include "ControllablePhysicsComponent.h" #include "BaseCombatAIComponent.h" #include "dpCommon.h" #include "dpWorld.h" #include "EntityManager.h" #include "SimplePhysicsComponent.h" #include "CDClientManager.h" #include "CDComponentsRegistryTable.h" #include "CDPhysicsComponentTable.h" std::map MovementAIComponent::m_PhysicsSpeedCache = {}; MovementAIComponent::MovementAIComponent(Entity* parent, MovementAIInfo info) : Component(parent) { m_Info = std::move(info); m_Done = true; m_BaseCombatAI = nullptr; m_BaseCombatAI = reinterpret_cast(m_OwningEntity->GetComponent(eReplicaComponentType::BASE_COMBAT_AI)); //Try and fix the insane values: if (m_Info.wanderRadius > 5.0f) m_Info.wanderRadius = m_Info.wanderRadius * 0.5f; if (m_Info.wanderRadius > 8.0f) m_Info.wanderRadius = 8.0f; if (m_Info.wanderSpeed > 0.5f) m_Info.wanderSpeed = m_Info.wanderSpeed * 0.5f; m_BaseSpeed = GetBaseSpeed(m_OwningEntity->GetLOT()); m_NextWaypoint = GetCurrentPosition(); m_Acceleration = 0.4f; m_Interrupted = false; m_PullPoint = {}; m_HaltDistance = 0; m_Timer = 0; m_CurrentSpeed = 0; m_Speed = 0; m_TotalTime = 0; m_LockRotation = false; } MovementAIComponent::~MovementAIComponent() = default; void MovementAIComponent::Update(const float deltaTime) { if (m_Interrupted) { const auto source = GetCurrentWaypoint(); const auto speed = deltaTime * 2.5f; NiPoint3 velocity; velocity.x = (m_PullPoint.x - source.x) * speed; velocity.y = (m_PullPoint.y - source.y) * speed; velocity.z = (m_PullPoint.z - source.z) * speed; SetPosition(source + velocity); if (Vector3::DistanceSquared(GetCurrentPosition(), m_PullPoint) < 2 * 2) { m_Interrupted = false; } return; } if (AtFinalWaypoint()) // Are we done? { return; } if (m_HaltDistance > 0) { if (Vector3::DistanceSquared(ApproximateLocation(), GetDestination()) < m_HaltDistance * m_HaltDistance) // Prevent us from hugging the target { Stop(); return; } } if (m_Timer > 0) { m_Timer -= deltaTime; if (m_Timer > 0) { return; } m_Timer = 0; } const auto source = GetCurrentWaypoint(); SetPosition(source); NiPoint3 velocity = NiPoint3::ZERO; if (m_Acceleration > 0 && m_BaseSpeed > 0 && AdvanceWaypointIndex()) // Do we have another waypoint to seek? { m_NextWaypoint = GetCurrentWaypoint(); if (m_NextWaypoint == source) { m_Timer = 0; goto nextAction; } if (m_CurrentSpeed < m_Speed) { m_CurrentSpeed += m_Acceleration; } if (m_CurrentSpeed > m_Speed) { m_CurrentSpeed = m_Speed; } const auto speed = m_CurrentSpeed * m_BaseSpeed; const auto delta = m_NextWaypoint - source; // Normalize the vector const auto length = sqrtf(delta.x * delta.x + delta.y * delta.y + delta.z * delta.z); if (length > 0) { velocity.x = (delta.x / length) * speed; velocity.y = (delta.y / length) * speed; velocity.z = (delta.z / length) * speed; } // Calclute the time it will take to reach the next waypoint with the current speed m_TotalTime = m_Timer = length / speed; SetRotation(NiQuaternion::LookAt(source, m_NextWaypoint)); } else { // Check if there are more waypoints in the queue, if so set our next destination to the next waypoint if (!m_Queue.empty()) { SetDestination(m_Queue.top()); m_Queue.pop(); } else { // We have reached our final waypoint Stop(); return; } } nextAction: SetVelocity(velocity); EntityManager::Instance()->SerializeEntity(m_OwningEntity); } const MovementAIInfo& MovementAIComponent::GetInfo() const { return m_Info; } bool MovementAIComponent::AdvanceWaypointIndex() { if (m_PathIndex >= m_CurrentPath.size()) { return false; } m_PathIndex++; return true; } NiPoint3 MovementAIComponent::GetCurrentWaypoint() const { if (m_PathIndex >= m_CurrentPath.size()) { return GetCurrentPosition(); } return m_CurrentPath[m_PathIndex]; } NiPoint3 MovementAIComponent::GetNextWaypoint() const { return m_NextWaypoint; } NiPoint3 MovementAIComponent::GetCurrentPosition() const { return m_OwningEntity->GetPosition(); } NiPoint3 MovementAIComponent::ApproximateLocation() const { auto source = GetCurrentPosition(); if (m_Done) { return source; } auto destination = m_NextWaypoint; auto factor = m_TotalTime > 0 ? (m_TotalTime - m_Timer) / m_TotalTime : 0; auto x = source.x + factor * (destination.x - source.x); auto y = source.y + factor * (destination.y - source.y); auto z = source.z + factor * (destination.z - source.z); NiPoint3 approximation = NiPoint3(x, y, z); if (dpWorld::Instance().IsLoaded()) { approximation.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(approximation); } return approximation; } bool MovementAIComponent::Warp(const NiPoint3& point) { Stop(); NiPoint3 destination = point; if (dpWorld::Instance().IsLoaded()) { destination.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point); if (std::abs(destination.y - point.y) > 3) { return false; } } SetPosition(destination); EntityManager::Instance()->SerializeEntity(m_OwningEntity); return true; } float MovementAIComponent::GetTimer() const { return m_Timer; } bool MovementAIComponent::AtFinalWaypoint() const { return m_Done; } void MovementAIComponent::Stop() { if (m_Done) { return; } SetPosition(ApproximateLocation()); SetVelocity(NiPoint3::ZERO); m_TotalTime = m_Timer = 0; m_Done = true; m_CurrentPath = {}; m_PathIndex = 0; m_CurrentSpeed = 0; EntityManager::Instance()->SerializeEntity(m_OwningEntity); } void MovementAIComponent::PullToPoint(const NiPoint3& point) { Stop(); m_Interrupted = true; m_PullPoint = point; } void MovementAIComponent::SetPath(std::vector path) { std::reverse(path.begin(), path.end()); for (const auto& point : path) { m_Queue.push(point); } SetDestination(m_Queue.top()); m_Queue.pop(); } float MovementAIComponent::GetBaseSpeed(LOT lot) { // Check if the lot is in the cache const auto& it = m_PhysicsSpeedCache.find(lot); if (it != m_PhysicsSpeedCache.end()) { return it->second; } CDComponentsRegistryTable* componentRegistryTable = CDClientManager::Instance().GetTable(); CDPhysicsComponentTable* physicsComponentTable = CDClientManager::Instance().GetTable(); int32_t componentID; CDPhysicsComponent* physicsComponent = nullptr; componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::CONTROLLABLE_PHYSICS, -1); if (componentID != -1) { physicsComponent = physicsComponentTable->GetByID(componentID); goto foundComponent; } componentID = componentRegistryTable->GetByIDAndType(lot, eReplicaComponentType::SIMPLE_PHYSICS, -1); if (componentID != -1) { physicsComponent = physicsComponentTable->GetByID(componentID); goto foundComponent; } foundComponent: // Client defaults speed to 10 and if the speed is also null in the table, it defaults to 10. float speed = 10.0f; if (physicsComponent) speed = physicsComponent->speed; float delta = fabs(speed) - 1.0f; if (delta <= std::numeric_limits::epsilon()) speed = 10.0f; m_PhysicsSpeedCache[lot] = speed; return speed; } void MovementAIComponent::SetPosition(const NiPoint3& value) { auto* controllablePhysicsComponent = m_OwningEntity->GetComponent(); if (controllablePhysicsComponent != nullptr) { controllablePhysicsComponent->SetPosition(value); return; } auto* simplePhysicsComponent = m_OwningEntity->GetComponent(); if (simplePhysicsComponent != nullptr) { simplePhysicsComponent->SetPosition(value); } } void MovementAIComponent::SetRotation(const NiQuaternion& value) { if (m_LockRotation) { return; } auto* controllablePhysicsComponent = m_OwningEntity->GetComponent(); if (controllablePhysicsComponent != nullptr) { controllablePhysicsComponent->SetRotation(value); return; } auto* simplePhysicsComponent = m_OwningEntity->GetComponent(); if (simplePhysicsComponent != nullptr) { simplePhysicsComponent->SetRotation(value); } } void MovementAIComponent::SetVelocity(const NiPoint3& value) { auto* controllablePhysicsComponent = m_OwningEntity->GetComponent(); if (controllablePhysicsComponent != nullptr) { controllablePhysicsComponent->SetVelocity(value); return; } auto* simplePhysicsComponent = m_OwningEntity->GetComponent(); if (simplePhysicsComponent != nullptr) { simplePhysicsComponent->SetVelocity(value); } } void MovementAIComponent::SetDestination(const NiPoint3& value) { if (m_Interrupted) { return; } /*if (Vector3::DistanceSquared(value, GetDestination()) < 2 * 2) { return; }*/ const auto location = ApproximateLocation(); if (!AtFinalWaypoint()) { SetPosition(location); } std::vector computedPath; if (dpWorld::Instance().IsLoaded()) { computedPath = dpWorld::Instance().GetNavMesh()->GetPath(GetCurrentPosition(), value, m_Info.wanderSpeed); } else { // Than take 10 points between the current position and the destination and make that the path auto point = location; auto delta = value - point; auto step = delta / 10; for (int i = 0; i < 10; i++) { point = point + step; computedPath.push_back(point); } } if (computedPath.empty()) // Somehow failed { return; } m_CurrentPath.clear(); m_CurrentPath.push_back(location); // Simply path for (auto point : computedPath) { if (dpWorld::Instance().IsLoaded()) { point.y = dpWorld::Instance().GetNavMesh()->GetHeightAtPoint(point); } m_CurrentPath.push_back(point); } m_CurrentPath.push_back(computedPath[computedPath.size() - 1]); m_PathIndex = 0; m_TotalTime = m_Timer = 0; m_Done = false; } NiPoint3 MovementAIComponent::GetDestination() const { if (m_CurrentPath.empty()) { return GetCurrentPosition(); } return m_CurrentPath[m_CurrentPath.size() - 1]; } void MovementAIComponent::SetSpeed(const float value) { m_Speed = value; m_Acceleration = value / 5; } float MovementAIComponent::GetSpeed() const { return m_Speed; } void MovementAIComponent::SetAcceleration(const float value) { m_Acceleration = value; } float MovementAIComponent::GetAcceleration() const { return m_Acceleration; } void MovementAIComponent::SetHaltDistance(const float value) { m_HaltDistance = value; } float MovementAIComponent::GetHaltDistance() const { return m_HaltDistance; } void MovementAIComponent::SetCurrentSpeed(float value) { m_CurrentSpeed = value; } float MovementAIComponent::GetCurrentSpeed() const { return m_CurrentSpeed; } void MovementAIComponent::SetLockRotation(bool value) { m_LockRotation = value; } bool MovementAIComponent::GetLockRotation() const { return m_LockRotation; }