/// \file /// \brief \b [Internal] A binary search tree, and an AVL balanced BST derivation. /// /// This file is part of RakNet Copyright 2003 Kevin Jenkins. /// /// Usage of RakNet is subject to the appropriate license agreement. /// Creative Commons Licensees are subject to the /// license found at /// http://creativecommons.org/licenses/by-nc/2.5/ /// Single application licensees are subject to the license found at /// http://www.jenkinssoftware.com/SingleApplicationLicense.html /// Custom license users are subject to the terms therein. /// GPL license users are subject to the GNU General Public /// License as published by the Free /// Software Foundation; either version 2 of the License, or (at your /// option) any later version. #ifndef __BINARY_SEARCH_TREE_H #define __BINARY_SEARCH_TREE_H #include "DS_QueueLinkedList.h" #include "RakMemoryOverride.h" #include "Export.h" #ifdef _MSC_VER #pragma warning( push ) #endif /// The namespace DataStructures was only added to avoid compiler errors for commonly named data structures /// As these data structures are stand-alone, you can use them outside of RakNet for your own projects if you wish. namespace DataStructures { /** * \brief A binary search tree and an AVL balanced binary search tree * * Initilize with the following structure * * BinarySearchTree<TYPE> * * OR * * AVLBalancedBinarySearchTree<TYPE> * * Use the AVL balanced tree if you want the tree to be balanced after every deletion and addition. This avoids the potential * worst case scenario where ordered input to a binary search tree gives linear search time results. It's not needed * if input will be evenly distributed, in which case the search time is O (log n). The search time for the AVL * balanced binary tree is O (log n) irregardless of input. * * Has the following member functions * unsigned int Height(<index>) - Returns the height of the tree at the optional specified starting index. Default is the root * add(element) - adds an element to the BinarySearchTree * bool del(element) - deletes the node containing element if the element is in the tree as defined by a comparison with the == operator. Returns true on success, false if the element is not found * bool IsInelement) - returns true if element is in the tree as defined by a comparison with the == operator. Otherwise returns false * DisplayInorder(array) - Fills an array with an inorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!. * DisplayPreorder(array) - Fills an array with an preorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!. * DisplayPostorder(array) - Fills an array with an postorder search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!. * DisplayBreadthFirstSearch(array) - Fills an array with a breadth first search of the elements in the tree. USER IS REPONSIBLE FOR ALLOCATING THE ARRAY!. * clear - Destroys the tree. Same as calling the destructor * unsigned int Height() - Returns the height of the tree * unsigned int size() - returns the size of the BinarySearchTree * GetPointerToNode(element) - returns a pointer to the comparision element in the tree, allowing for direct modification when necessary with complex data types. * Be warned, it is possible to corrupt the tree if the element used for comparisons is modified. Returns NULL if the item is not found * * * EXAMPLE * @code * BinarySearchTree<int> A; * A.Add(10); * A.Add(15); * A.Add(5); * int* array = new int [A.Size()]; * A.DisplayInorder(array); * array[0]; // returns 5 * array[1]; // returns 10 * array[2]; // returns 15 * @endcode * compress - reallocates memory to fit the number of elements. Best used when the number of elements decreases * * clear - empties the BinarySearchTree and returns storage * The assignment and copy constructors are defined * * \note The template type must have the copy constructor and * assignment operator defined and must work with >, <, and == All * elements in the tree MUST be distinct The assignment operator is * defined between BinarySearchTree and AVLBalancedBinarySearchTree * as long as they are of the same template type. However, passing a * BinarySearchTree to an AVLBalancedBinarySearchTree will lose its * structure unless it happened to be AVL balanced to begin with * Requires queue_linked_list.cpp for the breadth first search used * in the copy constructor, overloaded assignment operator, and * display_breadth_first_search. * * */ template <class BinarySearchTreeType> class RAK_DLL_EXPORT BinarySearchTree : public RakNet::RakMemoryOverride { public: struct node { BinarySearchTreeType* item; node* left; node* right; }; BinarySearchTree(); virtual ~BinarySearchTree(); BinarySearchTree( const BinarySearchTree& original_type ); BinarySearchTree& operator= ( const BinarySearchTree& original_copy ); unsigned int Size( void ); void Clear( void ); unsigned int Height( node* starting_node = 0 ); node* Add ( const BinarySearchTreeType& input ); node* Del( const BinarySearchTreeType& input ); bool IsIn( const BinarySearchTreeType& input ); void DisplayInorder( BinarySearchTreeType* return_array ); void DisplayPreorder( BinarySearchTreeType* return_array ); void DisplayPostorder( BinarySearchTreeType* return_array ); void DisplayBreadthFirstSearch( BinarySearchTreeType* return_array ); BinarySearchTreeType*& GetPointerToNode( const BinarySearchTreeType& element ); protected: node* root; enum Direction_Types { NOT_FOUND, LEFT, RIGHT, ROOT } direction; unsigned int HeightRecursive( node* current ); unsigned int BinarySearchTree_size; node*& Find( const BinarySearchTreeType& element, node** parent ); node*& FindParent( const BinarySearchTreeType& element ); void DisplayPostorderRecursive( node* current, BinarySearchTreeType* return_array, unsigned int& index ); void FixTree( node* current ); }; /// An AVLBalancedBinarySearchTree is a binary tree that is always balanced template <class BinarySearchTreeType> class RAK_DLL_EXPORT AVLBalancedBinarySearchTree : public BinarySearchTree<BinarySearchTreeType> { public: AVLBalancedBinarySearchTree() {} virtual ~AVLBalancedBinarySearchTree(); void Add ( const BinarySearchTreeType& input ); void Del( const BinarySearchTreeType& input ); BinarySearchTree<BinarySearchTreeType>& operator= ( BinarySearchTree<BinarySearchTreeType>& original_copy ) { return BinarySearchTree<BinarySearchTreeType>::operator= ( original_copy ); } private: void BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce ); void RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C ); void RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* C ); void DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A ); void DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node* A ); bool RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A ); bool LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node* A ); }; template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::BalanceTree( typename BinarySearchTree<BinarySearchTreeType>::node* current, bool rotateOnce ) { int left_height, right_height; while ( current ) { if ( current->left == 0 ) left_height = 0; else left_height = this->Height( current->left ); if ( current->right == 0 ) right_height = 0; else right_height = this->Height( current->right ); if ( right_height - left_height == 2 ) { if ( this->RightHigher( current->right ) ) RotateLeft( current->right ); else DoubleRotateLeft( current ); if ( rotateOnce ) break; } else if ( right_height - left_height == -2 ) { if ( this->LeftHigher( current->left ) ) RotateRight( current->left ); else DoubleRotateRight( current ); if ( rotateOnce ) break; } if ( current == this->root ) break; current = this->FindParent( *( current->item ) ); } } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input ) { typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Add ( input ); BalanceTree( current, true ); } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input ) { typename BinarySearchTree<BinarySearchTreeType>::node * current = BinarySearchTree<BinarySearchTreeType>::Del( input ); this->BalanceTree( current, false ); } template <class BinarySearchTreeType> bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::RightHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A ) { if ( A == 0 ) return false; return this->Height( A->right ) > this->Height( A->left ); } template <class BinarySearchTreeType> bool AVLBalancedBinarySearchTree<BinarySearchTreeType>::LeftHigher( typename BinarySearchTree<BinarySearchTreeType>::node *A ) { if ( A == 0 ) return false; return this->Height( A->left ) > this->Height( A->right ); } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *C ) { typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D; /* RIGHT ROTATION A = parent(b) b= parent(c) c = node to rotate around A | // Either direction B / \ C / \ D TO A | // Either Direction C / \ B / \ D <Leave all other branches branches AS-IS whether they point to another node or simply 0> */ B = this->FindParent( *( C->item ) ); A = this->FindParent( *( B->item ) ); D = C->right; if ( A ) { // Direction was set by the last find_parent call if ( this->direction == this->LEFT ) A->left = C; else A->right = C; } else this->root = C; // If B has no parent parent then B must have been the root node B->left = D; C->right = B; } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateRight( typename BinarySearchTree<BinarySearchTreeType>::node *A ) { // The left side of the left child must be higher for the tree to balance with a right rotation. If it isn't, rotate it left before the normal rotation so it is. RotateLeft( A->left->right ); RotateRight( A->left ); } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::RotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *C ) { typename BinarySearchTree<BinarySearchTreeType>::node * A, *B, *D; /* RIGHT ROTATION A = parent(b) b= parent(c) c = node to rotate around A | // Either direction B / \ C / \ D TO A | // Either Direction C / \ B / \ D <Leave all other branches branches AS-IS whether they point to another node or simply 0> */ B = this->FindParent( *( C->item ) ); A = this->FindParent( *( B->item ) ); D = C->left; if ( A ) { // Direction was set by the last find_parent call if ( this->direction == this->LEFT ) A->left = C; else A->right = C; } else this->root = C; // If B has no parent parent then B must have been the root node B->right = D; C->left = B; } template <class BinarySearchTreeType> void AVLBalancedBinarySearchTree<BinarySearchTreeType>::DoubleRotateLeft( typename BinarySearchTree<BinarySearchTreeType>::node *A ) { // The left side of the right child must be higher for the tree to balance with a left rotation. If it isn't, rotate it right before the normal rotation so it is. RotateRight( A->right->left ); RotateLeft( A->right ); } template <class BinarySearchTreeType> AVLBalancedBinarySearchTree<BinarySearchTreeType>::~AVLBalancedBinarySearchTree() { this->Clear(); } template <class BinarySearchTreeType> unsigned int BinarySearchTree<BinarySearchTreeType>::Size( void ) { return BinarySearchTree_size; } template <class BinarySearchTreeType> unsigned int BinarySearchTree<BinarySearchTreeType>::Height( typename BinarySearchTree::node* starting_node ) { if ( BinarySearchTree_size == 0 || starting_node == 0 ) return 0; else return HeightRecursive( starting_node ); } // Recursively return the height of a binary tree template <class BinarySearchTreeType> unsigned int BinarySearchTree<BinarySearchTreeType>::HeightRecursive( typename BinarySearchTree::node* current ) { unsigned int left_height = 0, right_height = 0; if ( ( current->left == 0 ) && ( current->right == 0 ) ) return 1; // Leaf if ( current->left != 0 ) left_height = 1 + HeightRecursive( current->left ); if ( current->right != 0 ) right_height = 1 + HeightRecursive( current->right ); if ( left_height > right_height ) return left_height; else return right_height; } template <class BinarySearchTreeType> BinarySearchTree<BinarySearchTreeType>::BinarySearchTree() { BinarySearchTree_size = 0; root = 0; } template <class BinarySearchTreeType> BinarySearchTree<BinarySearchTreeType>::~BinarySearchTree() { this->Clear(); } template <class BinarySearchTreeType> BinarySearchTreeType*& BinarySearchTree<BinarySearchTreeType>::GetPointerToNode( const BinarySearchTreeType& element ) { static typename BinarySearchTree::node * tempnode; static BinarySearchTreeType* dummyptr = 0; tempnode = Find ( element, &tempnode ); if ( this->direction == this->NOT_FOUND ) return dummyptr; return tempnode->item; } template <class BinarySearchTreeType> typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::Find( const BinarySearchTreeType& element, typename BinarySearchTree<BinarySearchTreeType>::node** parent ) { static typename BinarySearchTree::node * current; current = this->root; *parent = 0; this->direction = this->ROOT; if ( BinarySearchTree_size == 0 ) { this->direction = this->NOT_FOUND; return current = 0; } // Check if the item is at the root if ( element == *( current->item ) ) { this->direction = this->ROOT; return current; } #ifdef _MSC_VER #pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant #endif while ( true ) { // Move pointer if ( element < *( current->item ) ) { *parent = current; this->direction = this->LEFT; current = current->left; } else if ( element > *( current->item ) ) { *parent = current; this->direction = this->RIGHT; current = current->right; } if ( current == 0 ) break; // Check if new position holds the item if ( element == *( current->item ) ) { return current; } } this->direction = this->NOT_FOUND; return current = 0; } template <class BinarySearchTreeType> typename BinarySearchTree<BinarySearchTreeType>::node*& BinarySearchTree<BinarySearchTreeType>::FindParent( const BinarySearchTreeType& element ) { static typename BinarySearchTree::node * parent; Find ( element, &parent ); return parent; } // Performs a series of value swaps starting with current to fix the tree if needed template <class BinarySearchTreeType> void BinarySearchTree<BinarySearchTreeType>::FixTree( typename BinarySearchTree::node* current ) { BinarySearchTreeType temp; while ( 1 ) { if ( ( ( current->left ) != 0 ) && ( *( current->item ) < *( current->left->item ) ) ) { // Swap the current value with the one to the left temp = *( current->left->item ); *( current->left->item ) = *( current->item ); *( current->item ) = temp; current = current->left; } else if ( ( ( current->right ) != 0 ) && ( *( current->item ) > *( current->right->item ) ) ) { // Swap the current value with the one to the right temp = *( current->right->item ); *( current->right->item ) = *( current->item ); *( current->item ) = temp; current = current->right; } else break; // current points to the right place so quit } } template <class BinarySearchTreeType> typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Del( const BinarySearchTreeType& input ) { typename BinarySearchTree::node * node_to_delete, *current, *parent; if ( BinarySearchTree_size == 0 ) return 0; if ( BinarySearchTree_size == 1 ) { Clear(); return 0; } node_to_delete = Find( input, &parent ); if ( direction == NOT_FOUND ) return 0; // Couldn't find the element current = node_to_delete; // Replace the deleted node with the appropriate value if ( ( current->right ) == 0 && ( current->left ) == 0 ) // Leaf node, just remove it { if ( parent ) { if ( direction == LEFT ) parent->left = 0; else parent->right = 0; } delete node_to_delete->item; delete node_to_delete; BinarySearchTree_size--; return parent; } else if ( ( current->right ) != 0 && ( current->left ) == 0 ) // Node has only one child, delete it and cause the parent to point to that child { if ( parent ) { if ( direction == RIGHT ) parent->right = current->right; else parent->left = current->right; } else root = current->right; // Without a parent this must be the root node delete node_to_delete->item; delete node_to_delete; BinarySearchTree_size--; return parent; } else if ( ( current->right ) == 0 && ( current->left ) != 0 ) // Node has only one child, delete it and cause the parent to point to that child { if ( parent ) { if ( direction == RIGHT ) parent->right = current->left; else parent->left = current->left; } else root = current->left; // Without a parent this must be the root node delete node_to_delete->item; delete node_to_delete; BinarySearchTree_size--; return parent; } else // Go right, then as left as far as you can { parent = current; direction = RIGHT; current = current->right; // Must have a right branch because the if statements above indicated that it has 2 branches while ( current->left ) { direction = LEFT; parent = current; current = current->left; } // Replace the value held by the node to delete with the value pointed to by current; *( node_to_delete->item ) = *( current->item ); // Delete current. // If it is a leaf node just delete it if ( current->right == 0 ) { if ( direction == RIGHT ) parent->right = 0; else parent->left = 0; delete current->item; delete current; BinarySearchTree_size--; return parent; } else { // Skip this node and make its parent point to its right branch if ( direction == RIGHT ) parent->right = current->right; else parent->left = current->right; delete current->item; delete current; BinarySearchTree_size--; return parent; } } } template <class BinarySearchTreeType> typename BinarySearchTree<BinarySearchTreeType>::node* BinarySearchTree<BinarySearchTreeType>::Add ( const BinarySearchTreeType& input ) { typename BinarySearchTree::node * current, *parent; // Add the new element to the tree according to the following alogrithm: // 1. If the current node is empty add the new leaf // 2. If the element is less than the current node then go down the left branch // 3. If the element is greater than the current node then go down the right branch if ( BinarySearchTree_size == 0 ) { BinarySearchTree_size = 1; root = new typename BinarySearchTree::node; root->item = new BinarySearchTreeType; *( root->item ) = input; root->left = 0; root->right = 0; return root; } else { // start at the root current = parent = root; #ifdef _MSC_VER #pragma warning( disable : 4127 ) // warning C4127: conditional expression is constant #endif while ( true ) // This loop traverses the tree to find a spot for insertion { if ( input < *( current->item ) ) { if ( current->left == 0 ) { current->left = new typename BinarySearchTree::node; current->left->item = new BinarySearchTreeType; current = current->left; current->left = 0; current->right = 0; *( current->item ) = input; BinarySearchTree_size++; return current; } else { parent = current; current = current->left; } } else if ( input > *( current->item ) ) { if ( current->right == 0 ) { current->right = new typename BinarySearchTree::node; current->right->item = new BinarySearchTreeType; current = current->right; current->left = 0; current->right = 0; *( current->item ) = input; BinarySearchTree_size++; return current; } else { parent = current; current = current->right; } } else return 0; // ((input == current->item) == true) which is not allowed since the tree only takes discrete values. Do nothing } } } template <class BinarySearchTreeType> bool BinarySearchTree<BinarySearchTreeType>::IsIn( const BinarySearchTreeType& input ) { typename BinarySearchTree::node * parent; find( input, &parent ); if ( direction != NOT_FOUND ) return true; else return false; } template <class BinarySearchTreeType> void BinarySearchTree<BinarySearchTreeType>::DisplayInorder( BinarySearchTreeType* return_array ) { typename BinarySearchTree::node * current, *parent; bool just_printed = false; unsigned int index = 0; current = root; if ( BinarySearchTree_size == 0 ) return ; // Do nothing for an empty tree else if ( BinarySearchTree_size == 1 ) { return_array[ 0 ] = *( root->item ); return ; } direction = ROOT; // Reset the direction while ( index != BinarySearchTree_size ) { // direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) ) { // Go left if the following 2 conditions are true // I can go left // I did not just move up from a right child // I did not just move up from a left child current = current->left; direction = ROOT; // Reset the direction } else if ( ( direction != RIGHT ) && ( just_printed == false ) ) { // Otherwise, print the current node if the following 3 conditions are true: // I did not just move up from a right child // I did not print this ndoe last cycle return_array[ index++ ] = *( current->item ); just_printed = true; } else if ( ( current->right != 0 ) && ( direction != RIGHT ) ) { // Otherwise, go right if the following 2 conditions are true // I did not just move up from a right child // I can go right current = current->right; direction = ROOT; // Reset the direction just_printed = false; } else { // Otherwise I've done everything I can. Move up the tree one node parent = FindParent( *( current->item ) ); current = parent; just_printed = false; } } } template <class BinarySearchTreeType> void BinarySearchTree<BinarySearchTreeType>::DisplayPreorder( BinarySearchTreeType* return_array ) { typename BinarySearchTree::node * current, *parent; unsigned int index = 0; current = root; if ( BinarySearchTree_size == 0 ) return ; // Do nothing for an empty tree else if ( BinarySearchTree_size == 1 ) { return_array[ 0 ] = *( root->item ); return ; } direction = ROOT; // Reset the direction return_array[ index++ ] = *( current->item ); while ( index != BinarySearchTree_size ) { // direction is set by the find function and holds the direction of the parent to the last node visited. It is used to prevent revisiting nodes if ( ( current->left != 0 ) && ( direction != LEFT ) && ( direction != RIGHT ) ) { current = current->left; direction = ROOT; // Everytime you move a node print it return_array[ index++ ] = *( current->item ); } else if ( ( current->right != 0 ) && ( direction != RIGHT ) ) { current = current->right; direction = ROOT; // Everytime you move a node print it return_array[ index++ ] = *( current->item ); } else { // Otherwise I've done everything I can. Move up the tree one node parent = FindParent( *( current->item ) ); current = parent; } } } template <class BinarySearchTreeType> inline void BinarySearchTree<BinarySearchTreeType>::DisplayPostorder( BinarySearchTreeType* return_array ) { unsigned int index = 0; if ( BinarySearchTree_size == 0 ) return ; // Do nothing for an empty tree else if ( BinarySearchTree_size == 1 ) { return_array[ 0 ] = *( root->item ); return ; } DisplayPostorderRecursive( root, return_array, index ); } // Recursively do a postorder traversal template <class BinarySearchTreeType> void BinarySearchTree<BinarySearchTreeType>::DisplayPostorderRecursive( typename BinarySearchTree::node* current, BinarySearchTreeType* return_array, unsigned int& index ) { if ( current->left != 0 ) DisplayPostorderRecursive( current->left, return_array, index ); if ( current->right != 0 ) DisplayPostorderRecursive( current->right, return_array, index ); return_array[ index++ ] = *( current->item ); } template <class BinarySearchTreeType> void BinarySearchTree<BinarySearchTreeType>::DisplayBreadthFirstSearch( BinarySearchTreeType* return_array ) { typename BinarySearchTree::node * current; unsigned int index = 0; // Display the tree using a breadth first search // Put the children of the current node into the queue // Pop the queue, put its children into the queue, repeat until queue is empty if ( BinarySearchTree_size == 0 ) return ; // Do nothing for an empty tree else if ( BinarySearchTree_size == 1 ) { return_array[ 0 ] = *( root->item ); return ; } else { DataStructures::QueueLinkedList<node *> tree_queue; // Add the root of the tree I am copying from tree_queue.Push( root ); do { current = tree_queue.Pop(); return_array[ index++ ] = *( current->item ); // Add the child or children of the tree I am copying from to the queue if ( current->left != 0 ) tree_queue.Push( current->left ); if ( current->right != 0 ) tree_queue.Push( current->right ); } while ( tree_queue.Size() > 0 ); } } template <class BinarySearchTreeType> BinarySearchTree<BinarySearchTreeType>::BinarySearchTree( const BinarySearchTree& original_copy ) { typename BinarySearchTree::node * current; // Copy the tree using a breadth first search // Put the children of the current node into the queue // Pop the queue, put its children into the queue, repeat until queue is empty // This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored. BinarySearchTree_size = 0; root = 0; if ( original_copy.BinarySearchTree_size == 0 ) { BinarySearchTree_size = 0; } else { DataStructures::QueueLinkedList<node *> tree_queue; // Add the root of the tree I am copying from tree_queue.Push( original_copy.root ); do { current = tree_queue.Pop(); Add ( *( current->item ) ) ; // Add the child or children of the tree I am copying from to the queue if ( current->left != 0 ) tree_queue.Push( current->left ); if ( current->right != 0 ) tree_queue.Push( current->right ); } while ( tree_queue.Size() > 0 ); } } template <class BinarySearchTreeType> BinarySearchTree<BinarySearchTreeType>& BinarySearchTree<BinarySearchTreeType>::operator= ( const BinarySearchTree& original_copy ) { typename BinarySearchTree::node * current; if ( ( &original_copy ) == this ) return *this; Clear(); // Remove the current tree // This is a copy of the constructor. A bug in Visual C++ made it so if I just put the constructor call here the variable assignments were ignored. BinarySearchTree_size = 0; root = 0; // Copy the tree using a breadth first search // Put the children of the current node into the queue // Pop the queue, put its children into the queue, repeat until queue is empty if ( original_copy.BinarySearchTree_size == 0 ) { BinarySearchTree_size = 0; } else { DataStructures::QueueLinkedList<node *> tree_queue; // Add the root of the tree I am copying from tree_queue.Push( original_copy.root ); do { current = tree_queue.Pop(); Add ( *( current->item ) ) ; // Add the child or children of the tree I am copying from to the queue if ( current->left != 0 ) tree_queue.Push( current->left ); if ( current->right != 0 ) tree_queue.Push( current->right ); } while ( tree_queue.Size() > 0 ); } return *this; } template <class BinarySearchTreeType> inline void BinarySearchTree<BinarySearchTreeType>::Clear ( void ) { typename BinarySearchTree::node * current, *parent; current = root; while ( BinarySearchTree_size > 0 ) { if ( BinarySearchTree_size == 1 ) { delete root->item; delete root; root = 0; BinarySearchTree_size = 0; } else { if ( current->left != 0 ) { current = current->left; } else if ( current->right != 0 ) { current = current->right; } else // leaf { // Not root node so must have a parent parent = FindParent( *( current->item ) ); if ( ( parent->left ) == current ) parent->left = 0; else parent->right = 0; delete current->item; delete current; current = parent; BinarySearchTree_size--; } } } } } // End namespace #endif #ifdef _MSC_VER #pragma warning( pop ) #endif