#ifndef __AMF3__H__ #define __AMF3__H__ #include "dCommonVars.h" #include "Logger.h" #include "Game.h" #include #include enum class eAmf : uint8_t { Undefined = 0x00, // An undefined AMF Value Null = 0x01, // A null AMF value False = 0x02, // A false AMF value True = 0x03, // A true AMF value Integer = 0x04, // An integer AMF value Double = 0x05, // A double AMF value String = 0x06, // A string AMF value XMLDoc = 0x07, // Unused in the live client and cannot be serialized without modification. An XML Doc AMF value Date = 0x08, // Unused in the live client and cannot be serialized without modification. A date AMF value Array = 0x09, // An array AMF value Object = 0x0A, // Unused in the live client and cannot be serialized without modification. An object AMF value XML = 0x0B, // Unused in the live client and cannot be serialized without modification. An XML AMF value ByteArray = 0x0C, // Unused in the live client and cannot be serialized without modification. A byte array AMF value VectorInt = 0x0D, // Unused in the live client and cannot be serialized without modification. An integer vector AMF value VectorUInt = 0x0E, // Unused in the live client and cannot be serialized without modification. An unsigned integer AMF value VectorDouble = 0x0F, // Unused in the live client and cannot be serialized without modification. A double vector AMF value VectorObject = 0x10, // Unused in the live client and cannot be serialized without modification. An object vector AMF value Dictionary = 0x11 // Unused in the live client and cannot be serialized without modification. A dictionary AMF value }; class AMFBaseValue { public: [[nodiscard]] constexpr virtual eAmf GetValueType() const noexcept { return eAmf::Undefined; } constexpr AMFBaseValue() noexcept = default; constexpr virtual ~AMFBaseValue() noexcept = default; }; // AMFValue template class instantiations template class AMFValue : public AMFBaseValue { public: AMFValue() = default; AMFValue(const ValueType value) : m_Data{ value } {} virtual ~AMFValue() override = default; [[nodiscard]] constexpr eAmf GetValueType() const noexcept override; [[nodiscard]] const ValueType& GetValue() const { return m_Data; } void SetValue(const ValueType value) { m_Data = value; } protected: ValueType m_Data; }; // Explicit template class instantiations template class AMFValue; template class AMFValue; template class AMFValue; template class AMFValue; template class AMFValue; template class AMFValue; // AMFValue template class member function instantiations template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::Null; } template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return m_Data ? eAmf::True : eAmf::False; } template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::Integer; } template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::Integer; } template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::String; } template <> [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::Double; } template [[nodiscard]] constexpr eAmf AMFValue::GetValueType() const noexcept { return eAmf::Undefined; } // As a string this is much easier to write and read from a BitStream. template <> class AMFValue : public AMFBaseValue { public: AMFValue() = default; AMFValue(const char* value) { m_Data = value; } virtual ~AMFValue() override = default; [[nodiscard]] constexpr eAmf GetValueType() const noexcept override { return eAmf::String; } [[nodiscard]] const std::string& GetValue() const { return m_Data; } void SetValue(const std::string& value) { m_Data = value; } protected: std::string m_Data; }; using AMFNullValue = AMFValue; using AMFBoolValue = AMFValue; using AMFIntValue = AMFValue; using AMFStringValue = AMFValue; using AMFDoubleValue = AMFValue; /** * The AMFArrayValue object holds 2 types of lists: * An associative list where a key maps to a value * A Dense list where elements are stored back to back * * Objects that are Registered are owned by this object * and are not to be deleted by a caller. */ class AMFArrayValue : public AMFBaseValue { using AMFAssociative = std::unordered_map; using AMFDense = std::vector; public: [[nodiscard]] constexpr eAmf GetValueType() const noexcept override { return eAmf::Array; } ~AMFArrayValue() override { for (const auto* valueToDelete : GetDense()) { if (valueToDelete) { delete valueToDelete; valueToDelete = nullptr; } } for (auto valueToDelete : GetAssociative()) { if (valueToDelete.second) { delete valueToDelete.second; valueToDelete.second = nullptr; } } } /** * Returns the Associative portion of the object */ [[nodiscard]] inline const AMFAssociative& GetAssociative() const noexcept { return m_Associative; } /** * Returns the dense portion of the object */ [[nodiscard]] inline const AMFDense& GetDense() const noexcept { return m_Dense; } /** * Inserts an AMFValue into the associative portion with the given key. * If a duplicate is attempted to be inserted, it is ignored and the * first value with that key is kept in the map. * * These objects are not to be deleted by the caller as they are owned by * the AMFArray object which manages its own memory. * * @param key The key to associate with the value * @param value The value to insert * * @return The inserted element if the type matched, * or nullptr if a key existed and was not the same type */ template [[maybe_unused]] std::pair*, bool> Insert(const std::string& key, const ValueType value) { const auto element = m_Associative.find(key); AMFValue* val = nullptr; bool found = true; if (element == m_Associative.cend()) { val = new AMFValue(value); m_Associative.emplace(key, val); } else { val = dynamic_cast*>(element->second); found = false; } return std::make_pair(val, found); } // Associates an array with a string key [[maybe_unused]] std::pair Insert(const std::string& key) { const auto element = m_Associative.find(key); AMFArrayValue* val = nullptr; bool found = true; if (element == m_Associative.cend()) { val = new AMFArrayValue(); m_Associative.emplace(key, val); } else { val = dynamic_cast(element->second); found = false; } return std::make_pair(val, found); } // Associates an array with an integer key [[maybe_unused]] std::pair Insert(const size_t index) { AMFArrayValue* val = nullptr; bool inserted = false; if (index >= m_Dense.size()) { m_Dense.resize(index + 1); val = new AMFArrayValue(); m_Dense.at(index) = val; inserted = true; } return std::make_pair(dynamic_cast(m_Dense.at(index)), inserted); } /** * @brief Inserts an AMFValue into the AMFArray key'd by index. * Attempting to insert the same key to the same value twice overwrites * the previous value with the new one. * * @param index The index to associate with the value * @param value The value to insert * @return The inserted element, or nullptr if the type did not match * what was at the index. */ template [[maybe_unused]] std::pair*, bool> Insert(const size_t index, const ValueType value) { AMFValue* val = nullptr; bool inserted = false; if (index >= m_Dense.size()) { m_Dense.resize(index + 1); val = new AMFValue(value); m_Dense.at(index) = val; inserted = true; } return std::make_pair(dynamic_cast*>(m_Dense.at(index)), inserted); } /** * Inserts an AMFValue into the associative portion with the given key. * If a duplicate is attempted to be inserted, it replaces the original * * The inserted element is now owned by this object and is not to be deleted * * @param key The key to associate with the value * @param value The value to insert */ void Insert(const std::string& key, AMFBaseValue* const value) { const auto element = m_Associative.find(key); if (element != m_Associative.cend() && element->second) { delete element->second; element->second = value; } else { m_Associative.emplace(key, value); } } /** * Inserts an AMFValue into the associative portion with the given index. * If a duplicate is attempted to be inserted, it replaces the original * * The inserted element is now owned by this object and is not to be deleted * * @param key The key to associate with the value * @param value The value to insert */ void Insert(const size_t index, AMFBaseValue* const value) { if (index < m_Dense.size()) { const AMFDense::const_iterator itr = m_Dense.cbegin() + index; if (*itr) delete m_Dense.at(index); } else { m_Dense.resize(index + 1); } m_Dense.at(index) = value; } /** * Pushes an AMFValue into the back of the dense portion. * * These objects are not to be deleted by the caller as they are owned by * the AMFArray object which manages its own memory. * * @param value The value to insert * * @return The inserted pointer, or nullptr should the key already be in use. */ template [[maybe_unused]] inline AMFValue* Push(const ValueType value) { return Insert(m_Dense.size(), value).first; } /** * Removes the key from the associative portion * * The pointer removed is now no longer managed by this container * * @param key The key to remove from the associative portion */ void Remove(const std::string& key, const bool deleteValue = true) { const AMFAssociative::const_iterator it = m_Associative.find(key); if (it != m_Associative.cend()) { if (deleteValue) delete it->second; m_Associative.erase(it); } } /** * Pops the last element in the dense portion, deleting it in the process. */ void Remove(const size_t index) { if (!m_Dense.empty() && index < m_Dense.size()) { const auto itr = m_Dense.cbegin() + index; if (*itr) delete (*itr); m_Dense.erase(itr); } } void Pop() { if (!m_Dense.empty()) Remove(m_Dense.size() - 1); } [[nodiscard]] AMFArrayValue* GetArray(const std::string& key) const { const AMFAssociative::const_iterator it = m_Associative.find(key); return it != m_Associative.cend() ? dynamic_cast(it->second) : nullptr; } [[nodiscard]] AMFArrayValue* GetArray(const size_t index) const { return index < m_Dense.size() ? dynamic_cast(m_Dense.at(index)) : nullptr; } [[maybe_unused]] inline AMFArrayValue* InsertArray(const std::string& key) { return static_cast(Insert(key).first); } [[maybe_unused]] inline AMFArrayValue* InsertArray(const size_t index) { return static_cast(Insert(index).first); } [[maybe_unused]] inline AMFArrayValue* PushArray() { return static_cast(Insert(m_Dense.size()).first); } /** * Gets an AMFValue by the key from the associative portion and converts it * to the AmfValue template type. If the key did not exist, it is inserted. * * @tparam The target object type * @param key The key to lookup * * @return The AMFValue */ template [[nodiscard]] AMFValue* Get(const std::string& key) const { const AMFAssociative::const_iterator it = m_Associative.find(key); return it != m_Associative.cend() ? dynamic_cast*>(it->second) : nullptr; } // Get from the array but dont cast it [[nodiscard]] AMFBaseValue* Get(const std::string& key) const { const AMFAssociative::const_iterator it = m_Associative.find(key); return it != m_Associative.cend() ? it->second : nullptr; } /** * @brief Get an AMFValue object at a position in the dense portion. * Gets an AMFValue by the index from the dense portion and converts it * to the AmfValue template type. If the index did not exist, it is inserted. * * @tparam The target object type * @param index The index to get * @return The casted object, or nullptr. */ template [[nodiscard]] AMFValue* Get(const size_t index) const { return index < m_Dense.size() ? dynamic_cast*>(m_Dense.at(index)) : nullptr; } // Get from the dense but dont cast it [[nodiscard]] AMFBaseValue* Get(const size_t index) const { return index < m_Dense.size() ? m_Dense.at(index) : nullptr; } private: /** * The associative portion. These values are key'd with strings to an AMFValue. */ AMFAssociative m_Associative; /** * The dense portion. These AMFValue's are stored one after * another with the most recent addition being at the back. */ AMFDense m_Dense; }; #endif //!__AMF3__H__